This is an Australia only sale (we can not and will not export this item)

Measurements

Backs- 2 @ Length-543mm x Width-215mm x Thickness-3.9

Sides- 2 @ Length-827mm x Width-127 x Thickness-3.7mm

If for any reason you are not 100% happy with this purchase I will refund your money and even pay the return postage within Australia.

We are happy to combine postage

Payment due within 14 days

Here at Craft-n-Tone Debbie and David love working with and being around Tasmanian and exotic tonewood. There is only the two of us and we work hard and take pride in our products to keep our customers happy. With your support and positive feedback we hope to grow as a business and expand our product range. We are so confident with our tonewood products we even offer free returns within Australia in the unlikely event that you are not completely satisfied, so please bid/buy confidently knowing that you have nothing to lose and do not hesitate to contact us with any questions or concerns but please note neither of us are luthiers.

Below is some information taken from the Tonewood Data Source that you may want to check out.

**Honduran Mahogany  Swietenia Macrophyllia  H=3.8, M=3.5, B=4.1, =3.7,=3.5, T=4
Threatened, but there are plantations. Pink yellow when sawed, but oxidizes to deep rich red or brown. Distinct yellow sapwood, can be figured. Has chatoyance. Works easily, takes a beautiful finish. Generally woody-sounding, but certain denser sets can approach rosewood.  Honduran Mahogany is lighter in weight than rosewood, koa, or maple. In spite of its weight, it yields a strong loud woody sound with a quick response and an emphasis on a warm, round midrange. The sound gets better as it ages.

Adequate supply though old growth is CITES listed. 800 on the Janka scale, specific gravity from  0.40-0.68, air dry density of 30-52pcf.



Bearclaw      Bearclaw, like the curl in curly maple, is a rippling of the longitudinal fibers, which divides the surface of the wood into shimmering patterns, often seen in more expensive Sitka Spruce.

Bee's Wing   A small-scale, very tight, mottle figure is sometimes referred to as "bee's wing" figure due to the similarity with what the wing of a bee looks like. East Indian Satinwood is extremely well known for having this figure, and it also occurs occasionally in Narra, Mahogany and Eucalyptus. So when is a figure "block mottle" and when is it "bee's wing" ... well, pretty much whenever a particular dealer decides that's what they want to call it.

Bird's Eye   A few woods, most notably Maple but also Anigre and a few others, can exist with large numbers of small round "defects" that do indeed resemble the eyes of birds. The density of the eyes ranges from sparse to dense; this is not a good figure to buy sight unseen. A good, truly dense, bird's eye maple board can make a spectacular addition to a project.

Chatoyance     Showing a band of bright reflected light, iridescence.

Compression    An area where the annular lines change from evenly spaced to significantly farther apart. Compression may occur as a result of a series of warmer than normal winters where the tree has a longer growing season.  
   
Curly   Contortions in grain direction sometimes reflect light differently as one moves down the grain and this creates an appearance of undulating waves known as curly grain. It is frequently described as looking like a wheat field in a mild wind, and can be so strong an effect that your eyes will swear that a flat piece of wood has a wavy surface. Many species develop this figure, Maple being a very common example. . An extreme form of curly figure is called "fiddleback". The amount of curl in a wood sold as "curly" can range from almost none to truely spectacular.

Fiddleback   Curly figure in wood (and fiddleback is just a variation of curly) is caused by contortions in grain direction such that light is reflected differently at different portions of the grain, creating an appearance of undulating waves, also called a "washboard" effect because it looks like an old corrugated-steel washboard. "Fiddleback" figure is a form of curly figure where the curls are very tight and fairly uniform, generally running perpendicular to the grain and across the entire width of a board. The name comes from the fact that such wood became popular to use on the backs of violins (fiddles), and nowadays guitars, because the figure is frequently very lively and attractive and such wood generally has good resonance properties. Logs for fiddleback veneers are quartersawn to produce very straight grain with curls running perpendicular to the grain and uninterrupted from edge to edge of the sheet. Many species develop this figure, but the most common ones are Maple, Makore, Anigre, and "English Sycamore" (which is actually a form of maple). Some of the prettiest versions occur in Claro Walnut, Myrtle, and Moa.

Figure     The pattern produced in a wood surface by annual growth rings, rays, knots, and deviations from regular grain. Fiddleback, Curly, Bee's Wing, Bird's Eye are all examples.

Grain       Grain is often used in reference to annual growth rings, as in "fine" or "coarse" grain; it is also used to indicate the direction of fibers, as in straight, spiral and curly grain. The direction of the grain, as well as the amount of figuring in the wood, can affect the way it is sanded and sawed. Grain is also described as either being "open" or "closed", referring to the relative size of the pores, that affects the way a wood accepts stain and finish.

Heartwood    Heartwood is the older, harder central portion of a tree. It usually contains deposits of various materials that frequently give it a darker color than sapwood. It is denser, less permeable and more durable than the surrounding sapwood.

Medullary Rays    Medullary rays extend radially from the core of the tree toward the bark. They vary in height from a few cells in some species, to four or more inches in the oaks; they’re responsible for the flake effect common to the quartersawn lumber in certain species.

Plainsawing     Plainsawing is the most common and least expensive method of sawing; most wood flooring is cut this way. Plainsawn lumber is obtained by making the first saw cut on a tangent to the circumference of the log and remaining cuts parallel to the first. This method is the most economical, because it provides the widest boards and results in the least waste.  (Since most of the lumber produced by plainsawing is flat- grained, with some vertical-grained wood included, plainsawn lumber will tend to contain more variation within and among boards than quartersawn lumber, in which nearly all of the wood is vertical-grained. Also, since flat-grained wood is less dimensionally stable than vertical-grained, plainsawn lumber will tend to expand and contract more across the width of the boards than quartersawn lumber.)
   Other physical differences to consider when choosing plainsawn lumber rather than quarter-sawn:
• Figure patterns resulting from the annual rings and some other types of figures are usually brought out more conspicuously by plainsawing.
• Shakes and pitch pockets, when present, extend through fewer boards.

Pomelle   Pomelle is a type of wood figure that resembles a puddle surface during a light rain: a dense pattern of small rings enveloping one another. Some say this has a "suede" or "furry" look. It's usually found in extremely large trees of African species like sapele, bubinga and makore. Some domestic species with a sparser, larger figure are referred to as "blistered". The term is not used totally reliably and you may encounter some confusion among the terms "blistered", "pomelle", and "quilted" from different vendors

Quartersawn     A method of cutting sections of wood perpendicular to the growth rings of a piece of lumber. Another term for quarter sawn is quartered.  Quarter-sawn wood may exhibit greater figure and has less pores to absorb moisture, which makes it more dimensionally stable. It also is a less efficient use of wood, more wastage. Much quarter-sawn wood is obtained by culling the vertical-grained wood that naturally results from plainsawing. For reasons other than cost, most people prefer quartersawn wood, although some people favor the greater variety in figuring produced in plainsawing. Other physical factors to keep in mind when choosing quartersawn lumber over plainsawn:
• It twists and cups less.
• It surface-checks and splits less during seasoning and in use.
• Raised grain produced by separation in the annual growth rings does not appear as pronounced.
• It wears more evenly.
• Figuring due to pronounced rays, interlocked and wavy grain are brought out more conspicuously.
• Sapwood appears only at the edges, and is limited to the width of the sapwood in the log.                           

Quilted   Quilted figure somewhat resembles a larger and exaggerated version of pommele or blister figure but has bulges that are elongated and closely crowded. Quilted grain looks three-dimensional when seen at its billowy best. Most commonly found in maple, it also occurs in mahogany, moabi, myrtle, and sapele, and less often in other species.

Riftsawn    Riftsawing is similar to quartersawing, with many of the same advantages and limitations. It accentuates the vertical grain and minimizes the flake effect common in quartersawn oak. The angle of the cut is changed slightly so that fewer saw cuts are parallel to the medullary rays, which are responsible for the flake effect.   Riftsawing creates more waste than quartersawing, making it generally more expensive.

Runout    Wood that is split with a wedge divides along the weakest part of the wood. When wood is cut by a blade, the wood fibers are torn along the path of the blade. Runout usually occurs in wood cut by a saw blade.  Wood that is split with a wedge will be stronger than that cut by a saw blade and is preferable for tonewood.  The reason is that in split wood, the wood fibers run all the way through the piece. In wood cut by a saw blade, the wood fibers are cut short by the blade and do not run all the way through the piece of wood.  Runout can be detected when planing a piece of wood. Planing against the grain will pull the blade into the wood causing gouges. Visual inspection of the edge of a piece can also show runout where the grain of the wood is not parallel to the edge.                   

Sapwood   Sapwood is the softer, younger outer portion of a tree that lies between the cambium (formative layer just under the bark) and the heartwood. It is more permeable, less durable, and usually lighter in color than the heartwood.

Spalted    Wood which has, as a result of fungal decay, blackish irregular lines which produce a decorative design. The wood may or may not be functionaliy affected by this.

Tap Tone    The sound ones gets when tapping on a board, a quick and easy measurement related to the wood’s inherent musicality.

Tonewood   Wood with the qualities and attributes required for use in musical instruments.   

Velocity of Sound    The speed at which  a material transmits energy. The higher the velocity of sound, the more lively the instrument.   




Selecting Wood for Musical Instruments   
                                                       
1) Tonewood Attributes                                       
    * Free of structural defects                                           
    * Very strong and stable; glues, bends, & finishes satisfactorally                                                   
    * Lightweight (if possible)                                                  
    * Carries sound well and in a pleasing manner.                                                                                                           
2) Selection Guidelines                               
    * No knots, worm holes, fungus, rot, cracks, or pitch pockets                           
    * Quarter sawn, straight grain, minimal runout                                   
    * Stiff, both along and across the grain                                   
    * Properly dried or seasoned                                           
    * Has a ringing sound (tone) when tapped
                                                           
3) Evaluation Methods                                               
    * Visual Inspection                                               
    * Physical measurements                                               
    * Sound response   
                                                       
Evaluating Tonewoods                                               
No one evaluation method is sufficient to choose the best tonewood specimen, especially not a scientific one.    Of the three categories of tonewood selection techniques, two depend on experience and personal preferences.    Measurement methods will help to narrow the selection to those pieces which meet the physical structural requirements for a musical instrument.  The following methods are important for all the woods which make an instrument, however the most important part is the top. Let's talk about #3.                                                          
Visual Inspection                                                   
The common grading scale for tonewoods is A, AA, AAA, and AAAA or master grade.   This grading scale is used by most retail sellers of tonewoods and is very subjective. There is no industry standard for these grades. Although many of the visual attributes of a piece of tonewood are indicators of structural strength and good tap tone.                                                                           
Grade A is clear of knots, swirls, and holes and has fairly straight grain. It may have uneven color, streaks, and wide apart/uneven grain lines, also called compression. It will probably not be perfectly quarter sawn...                                                                                    
Grade AA is somewhere between A and AAA grade.  That's real specific, isn't it?
Grade AAA has even overall color, even and close grain lines, perfectly quarter sawn along the whole width of the board, with minimal runout. Grain lines will probably be closer than 12 lines per inch. Cross-grain figure, also called silking or bearclaw will be present.                                                                                                
Grade AAAA or Master Grade has no color variation and very pronounced cross-grain figuring in addition to being perfectly quartered with minimal runout and close and even grain lines.                                                           
Physical Measurements                                               
Stiffness, both along the grain and across the grain, is the main indicator that a builder uses to determine the dimensions of the soundboard and other parts of a musical instrument. Traditionally, this has been an art taught by master to apprentice. A luthier had to learn the "feel" of the wood and plane and scrape the wood to the correct thickness and to make the bracing to the correct size for the finished instrument. There are now more precise ways than "feel" to measure the strength of tonewood. Precise measurement of tonewood strength can be helpful in deciding the correct thickness and the correct amount of bracing - but not without the knowledge of experienced instrument makers.  A general range of thickness of guitar tops is between 0.130" - 0.095". The stiffer a board, the thinner it can be and still be structurally adequate. The same thing applies to bracing. The stiffer the brace wood, the smaller the braces can be and still provide the needed structural support. A general range of brace size is not more than 5/16" wide and not more than 3/4" tall. The thinner soundboard and smaller bracing allows less mass. Less mass in a soundboard translates to a more responsive and louder instrument. It also increases the risk of damage or self-destruction. 
                                                                                   
Note:    Measurement can be defined as quantifying something using a standard. Whatever standard is used, it needs to be used consistently throughout the process.
                                                   
The stiffness of a wood beam is measured by how far the beam deflects when a certain amount of pressure is applied to it, or how much pressure must be applied to make the beam deflect a certain distance. A formula has been derived that measures the stiffness.                                                   
E = P*l^3/4w*t^3*d                                                  
P = the amount of pressure applied                                          
l = the length between supports                                          
w = the width of the wood sample                                         
t = the thickness of the wood sample                                          
d = the distance the sample deflected when pressure was applied   

           
MOE (Modulus of Elasticity) Values of some Tonewoods Species                                                    
                                 MOE(x10^6 in/lb^2)  Weight(lb/ft^3)   Top thickness?                                               
            Redwood                   1.34                        28                    
            Western Red Cedar    1.11                        23                    .130"           
            Yellow Cedar             1.42                        31                                
            Englemann Spruce     1.3                          23                                
            White Spruce             1.43                        28                                
            Red Spruce                1.61                        28                    110"                       
            Sitka Spruce              1.57                        28                               
            Indian Rosewood       1.78                         53                                
            African Mahogany      1.31                         32                                
            Ebony                        1.43                        45                                
            Honduras Mahogany   1.42                         30                                
            Brazilean rosewood    1.88                        47                                
            Bigleaf Maple             1.45                        34                                
            Black Walnut              1.68                        38                                                    
NOTES:   Top Thickness" is a possible safe minimum value.  Both red and white spruce are sometimes called Adirondack, but note the difference in MOE.        
                                                                  
Sound Response
    This evaluation method is the most subjective and variable. Some luthiers will tune a top to some note like F sharp, others will just listen for a musical sound on the top after it had been joined. Still others will sprinkle glitter or sawdust onto a braced top and vibrate it with a transducer or speaker, see the patterns this makes, and then make adjustments. There is some value to sound response evaluation as a possible last step validation of the other two methods, or as a way to select tonewood for a certain final sound. There are other things that affect tonality in a finished instrument more than tap tone: things like the volume of the body, the size and shape of the sound hole(s), the scale length, location of the bridge,and the size and composition of the strings to name a few. Even the species of wood selected for a top probably has more of an effect on the final sound of an instrument than tap tone. In the end, tap tone methods are at least as variable as musical styles or individual personalities.  Regardless, they are fun.         




Considerations for the Build
Style                                  Dreadnaught, Jumbo, Concert, OM, OOO, Parlour.....
Cutaway                             none, Venetian, Florentine.....
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   
Top Wood                          type of spruce, cedar or redwood....
Top wood finish                  glossy nitro, lacquer, poly, varnish, French polish...
binding at top edges           wood, black, white... 
rosette                               inlaid with wood, herringbone, spalted wood,; abalone or pearl...
pickguard                           clear, black, tortoise shell
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   
Body Wood                        that's why you are looking here  -  any upcharge?
Body wood figure               see pictures from luthier
Body wood finish               glossy nitro, lacquer, poly, varnish, French polish
back  center stripe            none, contrasting wood, same as bindings....
body binding                      wood, black, white
purfling                             ditto
strap buttons                     yes, no
lining & side braces            up to the luthier?   
back braces                       up to the luthier?
brace under bridge            up to the luthier?
brace pattern, style           up to the luthier?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   
Neck Wood                         mahogany, or ?  Single piece,  multi-piece neck. Type of finish. Any upcharge?
Neck structure                    D, V, assymetrical...
Neck finish                         ultra smooth, glossy,
Headstock                          vintage style, slotted, luthier's design...
Headstock overlay              same as back and sides...black, other wood....  
inlay on head                      custom, luthier logo
back overlay on headstock   often absent 
trussrod cover                     hidden, accessed through headstock
headstock binding               abalone, black/white, body binding, none
tuners                                 Schaller, Gotoh, Grover.....
volute                                 sometimes absent
heel bottom cover               binding wood, body wood, none...
heel shape                           jazz style, flat, sharp,/ curved....
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   
scale                                    many available
nut width                             many available
Nut and saddle                      ivory, fossiliized bone, man-made....
bridge                                   ditto
fretboard                              ebony, rosewood......
fretboard binding                  sometimes absent, black, same wood as body bindiing....   
fingerboard radiused?            yes (usually)
fret type                               profile, metal chosen
inlay on fretboard                 none, dots, diamonds, clouds, custom, fancy
neck width   
# frets clear of body             12-14
action                                   depends upon your playing style, usually low as low as feasible
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   
Case                                      soft, Canadian, custom....  Included with the sale or extra?
Electronics                            none, pickup kind, location of controls
Warranty                               for whose life?
Price                                     total, installments made when?
Delivery                                included with the sale?  Date?
Special Requests                    double top, 12 string, baritone, fan frets, sound port, Manzer wedge....




Janka Hardness Scale
     The Janka hardness test is a measurement of the force necessary to embed a .444-inch steel ball to half its diameter into a vertically sawn piece of  wood. It is an industry standard for gauging the ability of various species to tolerate denting and normal wear, as well as being a good indication of the effort required to either nail or saw the particular wood. The higher the number, the harder the wood. Woods used as tone woods are in bold. There are a couple of woods for which I found more  than one figure.

Wood Variety         Sorted by Hardness
Lignum Vitae                     4390
Ipe (Lapacho)                    3680
African Blackwood            3500
Macassar Ebony                 3220
Brazilian Rosewood          3000
Bloodwood                        2900
Osage-Orange                    2500
Jatoba                               2350   
Screwbean Mesquite         2335
Persimmon                        2300
Santos Mahogany               2200
Dogwood                            2150
Ohia                                   2090
Purple Heart                     2090
Bubinga                             1980 (2000+?)
Jarrah                               1910, 2082
Hop Hornbeam                   1860
Purpleheart                      1860
Pecan                                1820
Shagbark Hickory               1820
Hornbeam                         1780
Morado                             1780
Ziracote                           1750
Apple                                1730
Paduak                             1725
Rengas                             1720
Almond                             1700
Black Locust                    1700
Ovankol                           1650
Wenge                             1630
Honey Locust                    1580
Zebrawood                      1575
Witch Hazel                      1530
Canarywood                     1520
Sapele                             1500
Orientalwood                    1480
Bastogne Walnut              1460
Madrone                           1460
Rosewood                        1450
Sugar Maple                      1450
Hard Maple                      1450
Cuban Mahogany             1430
Tanoak                             1400
Tamarind                          1400
Cypress                           1375
White Oak                       1360
African Mahogany           1350, 830
White Ash                       1320
Beech                              1300
Angelique                       1290
Myrtlewood                    1270
Yellow Birch                   1260
Red Oak                          1260
Vanautu Blackwood         1200
Larch                               1200
Bastogne Walnut             1000-1500
English Walnut                  1200
King Billy Pine                 1200?
Green Ash                         1200
Paulownia
Teak (true)                       1155
Pacific Yew                       1150
Cocobolo                         1136
Koa                                  1110
Cascara                             1040
Southern Magnolia             1020
Am. Black Walnut             1010
Claro Walnut                      950-1000
Black Cherry                      950
Imbuya                              950
Sourwood                           940
Eastern Red Cedar            900
Hackberry                          880
Longleaf Pine                     875
Rock Elm                            860
Slippery Elm                       860
Bigleaf Maple                     850
Black Ash                           850
Tropical Am Mahogany      845
Lacewood                         840
African Mahogany             830
American Elm                   830
Western Larch                  830
Red Lauan                         825
Honduran Mahogany         830
Sycamore                         770
Port Orford Cedar            720
Silver Maple                      700
White Lauan                      690
Douglas Fir                       685
Loblolly Pine                     670
Southern Shortleaf Pine     670
Sassafras                           630
Tamarack                          590
Northern Catalpa               550
American Chestnut            540
Yellow Poplar                    540
Bald Cypress                      510
Butternut                         490
Redwood                          480
Black Willow                      420
Basswood                           410
Yellow Buckeye                  350
Aspen                                 350

Sorted by Wood         Hardness    (not all above are sorted)
African Mahogany                1350
Almond                               1700
American Black Walnut        1010
American Chestnut                540
American Elm                        830
Angelique                            1290
Apple                                  1730
Aspen                                   350
Bald Cypress                         510
Basswood                             410
Bastogne Walnut                 1460
Beech                                 1300
Bigleaf Maple                        850
Black Ash                              850
Black Cherry                         950
Black Locust                        1700
Black Willow                         420
Bloodwood                          2900
Brazilian Rosewood             3000
Bubinga                              1980
Butternut                             490
Canarywood                        1520
Cascara                               1040
Claro Walnut                        950
Cuban Mahogany                 1430
Cypress                               1375
Dogwood                             2150
Douglas Fir                            685
Eastern Red Cedar                 900
English Walnut                     1200
Green Ash                            1200
Hackberry                              880
Honey Locust                       1580
Hop Hornbeam                     1860
Hornbeam                            1780
Imbuya                                  950
Ipoe (Lapacho)                     3640, 3680
Jarrah                                  1910, 2082
Jatoba                                 2350
Koa                                      1110
Lacewood                              840
Larch                                    1200
Lignum Vitae
                        4390
Longleaf Pine                         875
Macassar Ebony                     3220 (?)
Madrone                               1460
Mesquite                              2345
Morado                                 1780
Myrtlewood                          1270
Northern Catalpa                    550
Ohia                                     2090
Orientalwood                        1480
Osage-Orange                       2500
Ovankol                                1650
Pacific Yew                           1150
Paduak                                 1725
Pecan                                   1820
Persimmon                           2300
Port Orford Cedar                   720
Purpleheart                          1860, 2090
Red Lauan                              825
Redwood                                480
Rock Elm                                860
Rosewood                             1450
Santos Mahogany                   2200
Sapele                                  1500
Sassafras                                630
Screwbean Mesquite             2335
Shagbark Hickory                  1820
Silver Maple                           700
Slippery Elm                           860
Sourwood                               940
Southern Magnolia                 1020
Southern Yellow Pine              870, 670
Sugar Maple                          1450
Sycamore                               770
Tamarack                               590
Tamarind                              1400
Tanoak                                 1400
Tropical Am. Mahogany           845
Wenge                                  1630
Western Larch                        830
White Ash                             1320
White Lauan                           690
Witch Hazel                          1530
Yellow Birch                         1260
Yellow Buckeye                      350
Yellow Poplar                         540
Zebrawood                           1575

Partly taken from Wood Handbook: Wood as an Engineering Material (Agriculture Handbook 72, Forest Products Laboratory, Forest Service, US Department of Agriculture; revised 1987).




Wood Shrinkage

Wood shrinks most in the direction of the annual growth rings (tangentially), about one-half as much as across the rings (radially), and only slightly along the grain (longitudinally). The combined effects of radial and tangential shrinkage can distort the shape of wood pieces because of the difference in shrinkage and the curvature of the growth rings. Weight, shrinkage, strength and other properties depend on the moisture content of wood. In trees, moisture content may be as much as 200 percent of the weight of wood substance. After harvesting and milling, the wood will be dried to the proper moisture content for its end use. Wood is dimensionally stable when the moisture content is above the fiber saturation point (usually about 30 percent moisture content). Below that, wood changes dimension when it gains or loses moisture.

Different woods exhibit different moisture stability factors, but they generally shrink and swell the most in the direction of the annual growth rings (tangentially), about half as much across the rings (radially) and only slightly along the grain (longitudinally). This means that plainsawn flooring will tend to shrink and swell more in width than quartersawn flooring, and that most flooring will not shrink or swell much in length.

The numbers below reflect the dimensional change coefficient for the various species, measured as tangential shrinkage or swelling within normal moisture content limits of 6-14 percent. Tangential change values will normally reflect changes in plainsawn wood. Quartersawn wood will usually be more dimensionally stable than plainsawn.

The dimensional change coefficient can be used to calculate expected shrinkage or swelling. Simply multiply the change in moisture content by the change coefficient, then multiply by the width of the board. Example: A mesquite board (change coefficient = .00129) 5 inches wide experiences a moisture content change from 6 to 9 percent ­ a change of 3 percentage points. In actual practice, however, change may be diminished as the boards proximity to each other tends to restrain movement.

Calculation: 3 x .00129 = .00387 x 5 = .019 inches.

.00411        Hickory
.00396        Jarrah
.00369        Red Oak
.00365        White Oak
.00353        Maple
.00338        Yellow Birch
.00300        Jatoba
.00274        Ash
.00274        Walnut
.00267        Douglas Fir
.00248        Cherry
.00238        Santos mahogany
.00212        Purpleheart
.00201        Wenge
.00162        Cypress
.00124        Mesquite





 Why  Some Woods Are Best for Tops                                                                                                                     http://janartsguitars.com/joomla/

The table below shows calculated properties of resonating plates which have different wood properties but similar resonance frequencies. The calculations are based on the equation for the resonance frequency of an oscillating plate.

For two plates 1 and 2 assuming equal resonance frequency f and length dimension:
            h2 = ((Ex1 d2)/(Ex2 d1))0.5 h1  where h= thickness of plate, d=density, E = Modulus of Elasticity

The columns h2/h and w2/w compare thicknesses and mass of plates relative to a sitka spruce plate which has the same resonance frequency. Last column shows ratio between speed of sound (c) and density. The higher this value the more responsive the wood as top.

The table explains why the spruces and Western Red Cedar are good choices for the top and Indian rosewood, kauri and rimu are not so good for a top. The weight of a rimu or kauri top would be double the weight of a spruce top of the same resonance frequency. This would result in lower volume of sound and less response for higher frequencies. Reducing the thickness  and adapting the bracing may be a solution. Western Red Cedar looks good for building instruments producing a big sound. The table doesn't say anything about bracing or damping properties. Individual properties of samples show big variations. Cedar is associated with a warm tone. This could be related to a quicker dissipation (more damping) of higher frequencies or a weaker fundamental associated with a relative low density (nice little research topic).  Graphite is included in the table because it can be useful in combination with lighter materials like balsa wood. Balsa by itself is probably not strong enough to take the tension and the low mass is likely to result in a low sustain as well. Sitka and Port Orford Cedar (is actually not a cedar but cypress) are tougher than Engelmann Spruce and Western Red Cedar. This property may make it possible to make a thinner top, which results in a lower resonance frequency. A resonance frequency can be increased if desired by using stiffer bracing and/or increasing the dome shape of the top.
    
Species           Mod. of Elasticity         Density d     E/d        h2/h        w2w       c/d
                                E (// grain) *1010                         kg/m3
                              
                  (N/m2)
Sitka Spruce                    1.1                            379           29   
                                      1.0                                                           1.0          1.4
                                        .99                           360           28
Western Red Cedar         1.09                            320           34.1        .92          .72           18
                                        .77                           320            24        1.09          .92            15
                                        .82                           368            22        1.14        1.11            12.7
Englemann Spruce            .89                           350            25        1.07          .99           14
Port Orford Cedar           1.34                            470            29        1.0          1.24           11
                                        .9                              430            21        1.17         1.32
                                      1.2                             484            25        1.08         1.37           10.3
Bunya                             1.3                             460            28        1.02         1.23        1105 (?)
Brazilian Mahogany         1.33                            537            24.8     1.08         1.5             9.3
Big Leaf Maple                  .76                           440            17         1.31        1.52            9.4
Sapele                             1.03                           550            19         1.23        1.78            7.9
Australian Blackwood       1.3                            640            20.0      1.2          2.0             7
Red Beech                       1.16                           650            17.8     1.27         2.5             6.4
Kauri                                 .91                           560            16        1.34        1.98            7.1
Rimu                                 .96                           595            16         1.34        2.10           6.7
Koa                                 1.05                           670            15.8      1.36         2.4            5.9
Indian Rosewood             1.01                           797            12.6      1.51         3.1            4.4
  
And, for fun and games
Graphite                          6.89                          1800             38       4.1          2.48           3.4
Balsa                                  .34                           160             21       1.18          .5           29



Comparative Data:  Some woods Used for Stringed Instruments
Common Name       Specific Gravity   Tangential Shrinkage  Radial Shrinkage   Radial/ Tangential
African Blackwood            1.22                  
Alaska Yellow Cedar           .44                            6.0                             2.8                         2.1
Koa                                    .60                            6.2                             5.5                         1.1                 
Black Walnut                      .55                            7.8                             5.5                         1.4
Myrtle or California Laurel  .55                  
Bigleaf Maple                     .48                  
Sitka Spruce                       .40                             7.5                             4.3                        1.7
Honduras Mahogany            .40                             5.1                             3.7                        1.4
Indian Rosewood                .76                  
Engelmann Spruce             .34                              7.1                             3.8                         1.9
Eastern Spruce                  .40                              7.8                             3.8                         2.1
Western Red cedar            .33                              5.0                             2.4                         2.1
Redwood                           .40                              4.4                             2.6                         1.7




Top Wood Ranking                                            from Tim McKnight    www.mcknightguitars.com
Below you can find a chart with a "ranking" of most common wood species for tops, arranged from the most flexible to the stiffest species.

Common Name           Botanical Name                 Ave. Weight         Deflection
                                                                                                        weak -> stiff
Cedar                           thuja plicata                        185.0 grams        .096"
Douglas Fir                   pseudotsuga menziesii          215.5 grams        .090"
Redwood                      sequoia sempervirens           200.0 grams        .090"
Engelmann Spruce        picea engelmannii                195.0 grams        .089"
Caucasian Spruce         picea orientalis                     214.0 grams        .088"
New Sitka Spruce         picea sitchensis                    215.0 grams        .081"
Lutz Spruce
(Sitka /White hybrid)
                                  picea X lutzi Little                219.5 grams        .070"
1959 Sitka Spruce        picea sitchensis                    226.5 grams        .064"
Red (Adk) Spruce         picea rubens                        238.5 grams        .063"
European Spruce         picea abiens                         233.5 grams        .062"




Support Sound Ports

A "sound port" is a hole in the guitar's upper bout that allows the performer to hear it better but seemingly does nothing to hinder the sound the audience hears. I have seen them on quite a few custom guitars but not on any manufactured ones; that'll come. It sounds radical, but isn't. I did a test once with a guitar that had one. We'd cover up the sound port with a piece of paper and I'd play, then we'd open it and I'd play the same things, the same way. Each person listening said they could tell no difference. But there was a large difference to me, MUCH louder and clearer to my ears. I was really impressed and had come into the experiment with a definite bias, fully expecting to hate the concept.

Wanting to see if it was just me or if this was real, I did some research on the internet and found this:

 " When you play a standard acoustic guitar, you never hear the true sound that the guitar is producing. Why? Because what you hear is reflected sound. Have you asked someone to play a guitar for you, so you can hear it? Maybe you have played a guitar in a corner, or close to a wall, so you can hear it more clearly. Do you find yourself leaning over the side of the guitar, or angling the guitar upward, so your ear is more in line with the sound hole?  Now, with the benefit of a Sound Port, you can hear the true sound your guitar is producing. The sound port directs a portion of the guitars true sound to the player. The results are truly amazing! It is like having your very own personal sound monitor built into your guitar.

Blindfold tests prove that there is absolutely no loss of energy with a sound port. In fact, the results are quite the opposite. There is a discernable gain in sound hole projection, as well as a 360 degree sound gain around the player...
 
9/23/2006 - Some preliminary testing -
I was reading a thread on the internet recently and someone quoted me that 'sound ports increased frontal projection'. However, the poster mentioned that they could not believe my statement because I had no scientific data to back up my statement. Well, they were correct because I did not have any data to offer scientific proof other than the gray matter residing on top of my shoulders. This piqued my interest and motivated me to set out to run some controlled experiments to prove or disprove my gut instincts.

I borrowed a Metrosonics db307 Noise Dosimeter from a local lab and set out to run a few DOE's. I enlisted the help of a local musician to consistently strum open strings (without a pick) as I measured the decibel levels at different locations around two guitars, at different distances. The room we used is our 'Studio Loft' located above our work shop. The room is 16 feet wide x 26 feet long with 7 foot ceilings. The room has hardwood floors, textured drywall on the ceiling and walls. A center rug, numerous bass traps and acoustic panels are strategically placed around the room and in all corners to control reflective noise.

The following should also be prefaced by first saying this was not a lab quality double blind test nor were fixtures used to eliminate the human element from the tests. I only had a few hours available to borrow the meter so I did the best that I could with what little time I had. We used two guitars for this experiment: a Honduras Mahogany / Adi  with an oval shaped sound port, on the upper bout side, which shall henceforth be referred to as guitar A, and a Cuban Mahogany / Cedar with a Luckenbooth sound port which shall be referred to as guitar B....

Guitar A was first measured with the sound port closed with a sponge (
RV - I wonder how good an idea the sponge was. It seems it would absorg=b sound rather than refleclt it the way hard body wood would do.) and the instrument's microphone was placed 6" in front of the sound hole. Brad strummed the guitar in 4/4 time until we had a relatively steady display on the Dosimeter and then I snapped a picture to capture the data. Three pictures were taken to record three separate measurements at each position and then the measurements were compared on the digital pictures for accuracy. After we reviewed the pictures we found that the measurements had a total range of no more than .2 db for all the tests that we ran. This position measured 84.6 db.  I removed the sponge from the oval sound port and measured the volume again and we recorded 84.8 db. A small increase of .2 db.

Next the mic was moved 6" above the sound port and we measured the sound level the player normally hears with NO sound port and it measured 71.1 db. We then uncovered the port and measured an amazing 89.5 db emitted form the port. That is a 4.9 db gain at the port over and above the sound hole volume output.
 
Next we measured guitar B, first at the sound hole with the port closed and we recorded 88.6 db. The port was then uncovered and we measured a gain of 1.1 db or 89.7. We then measured the sound at the port with the port closed to replicate what a player would hear without a port and measured 74.3 db. The port was then uncovered and we measured an astounding 98.6 db or a whopping 10 db gain over the volume of the sound hole output!

This was shocking since this guitar had the *** port and I thought the volume was actually less than an oval or pic shape port. Hmmm, I was surprised by the data on that one.

Next I had Brad set in the middle of our studio sound room and continue his 4/4 strumming on guitar B while the  port was left open. I measured the sound volume level at four different points, six feet away from him. The first measurement was taken directly in front of the sound hole and it measured 72 db. I walked towards the neck and measured 68 db. Next I stood directly behind him and measured 70 db. The last measurement was recorded at the tail end of the guitar and this measurement was 74 db, ... louder than the frontal measurement. This was a bit puzzling so I had him cover the port and the db level dropped to 69 db. We concluded that this was the area that produced the most stereo effect of the sound hole combined with the sound port because this was the direction the port was facing towards.

Since we proved that there was a quantifiable and measurable gain in frontal projection on both guitars with the sound port open I wanted to find out what effect there was at longer distances. We measured 10 feet from the sound hole and measured 82.1 and 83.5 with the port closed and then open. Next we measured the volume at 20 feet and recorded 68.3 and 69.9 db with the port closed and then opened.

So there you have it folks, for what it its worth ??? I am not a scientist and I am sure someone will challenge my results but this is the best that this ole' boy can do. Now, back to makin' sawdust."

I talked with JJ Donahue, who also believes guitars are louder with sound ports. His theory: the open port allows air to flow through. Like speaking into a bottle, the sound gets muffled. But in a guitar, the sound is coming from within and projecting outwards. Is it the same? I am not sure of that, but do feel confidant that with a sound port you find it easier to hear yourself play, and the audience will not notice a difference.

           


Toxicity in Woods

_These, among others, were listed as having first appeared in American Woodturner , June 1990.  Very likely there are other that should be on this list, Butternut for instance, which is supposed to be far worse than it’s cousin Walnut. Note the legend at the bottom.
    Wood                    Reaction    Site    Potency   Source  Incidence
    Bald Cypress             S               R        +              D              R
    Birch                         S               R        ++            W,D          C
    Black Locust            I,N             E,S      +++           LB            C
    Blackwood                S              E,S      ++             W,D          C
    Boxwood                   S              E,S      ++             W,D         C
    Cocobolo                 I,S              E,S,R  +++           W,D          C
    Ebony                      I,S              E,S      ++            W,D          C
    Elm                            I               E,S      +              D              R
    Goncalo Alves            S              E,S      ++            W,D          R
    Mahogany                 S,P            S,R      +              D              U
    Maple (Spalted)        S,P             R        +++           D              C
    Myrtle                       S               R        ++             LB,D         C
    Oak                           S              E,S      ++             LB,D         R
                                     C                         ?               D              U
    Olivewood                 I,S            E,S,R    +++          W,D          C
    Padauk                       S             E,S,R    +              W,D          R
    Pau Ferro                   S             E,S        +             W,D           R
    Purpleheart                               N          ++           W,D           C
    Redwood                  S,P           E,S,R      ++            D              R
                                     C                          ?               D              U
    Rosewoods                I,S           E,S,R      ++++        W,D          U
    Satinwood                  I             E,S,R      +++         W,D          C
    Sassafras                    S             R           +             D              C
                                    DT            N           +             D,W,LB     R
                                     C                          ?               D             U
    Snakewood                 I              R          ++            W,D          R
    Spruce                       S              R          +             W,D           R
    Walnut, Black            S             E,S        ++            W,D           C
    Wenge                       S             E,S,R     +             W,D           C
    West. Red Cedar        S              R         +++           D,LB          C
    Yew                           I              E,S       ++            D               C
                                    DT            N,C      ++++         W,D           C
    Zebrawood                 S             E,S       ++            W,D

    REACTION:                SITE:               SOURCE:                INCIDENCE:
    I  - irritant                 S - skin            D - dust                  R - rare
    S  - sensitizer             E - eyes           LB - leaves,bark     C - common
    C  - nasopharyngeal    R - respiratory W - wood               U - uncommon
           cancer
    P  - pheumonitis,        C - cardiac
           alveolitis
         (hypersensitivity
          pneumonia)

    DT - direct toxin
    N - nausea, malaise



Bending of Alternative Woods (from "Forgotten Woods")

Bending Tests Shaping and Bending

Working with our woods for the flat surfaces of soundboards and backboards is a rather straight-forward task, but not all woods can be shaped and bent with equal ease and results when preparing instrument rims (ribs), especially where acute bends for cutaways and similar tight curves are concerned.

To analyze the bending and shaping attributes of our woods, we enlisted the aid of Roger Siminoff, author of  "The Luthier's Handbook" and luthierie consultant in Atascadero, California, who performed tests using several techniques. Complex bends were performed in a fixture that shaped the wood into a tight "S" curve. Each section of the "S" was formed around a 2" diameter post. While the radius of these bends is more extreme than those used for guitars, we wanted to provide you with information about shaping and bending our woods under the most extreme conditions.

For our tests, we considered how difficult it was to bend the wood, how much the wood sheared (checked), and how easily it cracked (if at all).  The smoothness of the bend was an important consideration in our tests. This sample piece bent beautifully and easily with smooth bends and curves.The Tests - what was evaluated:

Ease of bending: Each wood was graded on a scale of A-F based on how easily it bent from a standpoint of how much effort was applied to force the wood into a bend. (This is not to be confused with how satisfactory the bend was.) If the wood bent easily with very little effort or force, it was graded as "A". If the wood was very resistant to bending, it was graded as "F". The relative bending force speaks to the density, elasticity, resistance to bending, and overall strength of the wood.

Propensity to shear or check: Each wood was graded on a scale of A-F based on its propensity to shear or check. Aluminum bands were used on both sides of the wood to help form the wood into the bend. The aluminum bands were prepared to be 1/8" narrower than the wood to test how the exposed edge of the wood would react to being bent without support. If the wood had good structural integrity, and no edge tearing (shearing) occurred, it would be graded as "A". If the wood had poor structural integrity, and edge tearing was excessive, it would be graded as "F".

Propensity to crack: Each wood was graded on scale of A-F based on its propensity to crack across grain. If the wood bent with smooth, clean, flowing bends it was graded as an "A". If the wood presented small steps or erratic bends, it was graded as an "F". Wood that cracked immediately was graded as an "X". (Notes: 1-This does not suggest that the wood cannot be bent in curves with a larger radius or that it cannot be coaxed with more heat or a greater concentration of heat. 2- Woods rated "X" for cracking might best be used for flatted areas such as soundboards and backboards and not for ribs. Please contact us if you would like to purchase a small sample to test with your own bending methods.)

Curvature (smoothness) of bend: The shape and evenness of the curvature is very important. Each wood was graded on a scale of A-F based on how satisfactory the bend was. Bends that were very smooth, clean, and well shaped were graded as an "A". Bends that were erratic and not well shaped were graded as an "F".

Grain bias (preparation): Typically, woods bend more easily when the grain is flat (parallel to the wide side of the piece). Grain that is quartered or that runs across the piece imposes greater difficulty in bending. Most dense hardwoods can be bent well in both directions because the density and stiffness of the wood is more similar both across and through the annular rings. Our tests did not take grain direction into consideration and the pieces were prepared primarily in the vertical grain, quarter-sawn method.

Bending method: The wood was wetted for 5 minutes before being bent and we used steam as the heating and wetting agent. Steam at 216° was applied directly to the wood during the bending process from a hose, with an aggressive blast of steam coming from the steam chamber at 40psi. Steam was applied globally for 10 seconds and then directed at the bending location as the fixture was forming the wood into a bend. Table of Results

Common Name      Species Name                     Ease     Shear     Crack     Curvature
Higuerilla              Micandra spruceana              A+         A             A               A
Cachimbo             Cariniana domesticata           A+         A             A               A
Manchinga            Brosimun alicastrum              A+         B             A               A
Achihua                Huberodendom swietenoides D          D              C               C
Ishpingo               Amburana cearensis               A+        A+            A+              A+
Pumaquiro           Aspidosperma macrocarpon    C          C              A                B
Requia                 Guarea guidonea                   A           A             A                A
Pashaco               Amarillo Schizalobium sp      X
Tornillo               Cedralinga catenaeformis      A+         A              A                 A
Isigo                    Couratari sp.                         C          C              A                 A
Copaiba              Copaifera officinallis             A           A              A                 A
Pashaco Negro    Schizolobium parahybum       C           B               D                D
Mango                Manguifera indica                  A+         A               A                A+
Catahua             Hura crepitans                       C          A-              A                A-
Peruvian Walnut Juglans neotropica                A+         A               A                A
Shihuahuaco      Dipteryx micranta                  C           A               A                A
Quillabordon     Aspidosperma subincamum      F           A              A                A
Estoraque          Myroxylon balsamun               A+         B              B                 A
Caprirona          Callycophylum spruceanum     D           C               A                A-
Moena Amarillo  Aniba amazonica                    D           A               A                B
Panguana           Brosimun utile                        X
Tigrillo               Amburana cearensis               A           A               A                A
Hymiwood          species unknown                    A+         A+             A                 A+
         A perfect bend on Higuerilla.







Picture
Frequency of Woods
Picture
Relative Stability of Selected Woods