Part 1: Audio Power Amplifier Basics


1. Introduction


1.1 Organization of the Book


1.2 The Role of the Power Amplifier


1.3 Basic Performance Specifications


1.4 Additional Performance Specifications


1.5 Output Voltage and Current


1.6 Basic Amplifier Topology


1.7 Summary


2. Power Amplifier Basics


2.1 BJT Transistors


2.2 JFETs


2.3 Power MOSFETs


2.4 Basic Amplifier Stages


2.5 Current Mirrors


2.6 Current Sources and Voltage References


2.7 Complementary Feedback Pair (CFP)


2.8 Vbe Multiplier


2.9 Operational Amplifiers


2.10 Amplifier Design Analysis


3. Power Amplifier Design Evolution


3.1 About Simulation


3.2 The Basic Power Amplifier


3.3 Adding Input Stage Degeneration


3.4 Adding a Darlington VAS


3.5 Input Stage Current Mirror Load


3.6 The Output Triple


3.7 Cascoded VAS


3.8 Paralleling Output Transistors


3.9 Higher Power Amplifiers


3.10 Crossover Distortion


3.11 Performance Summary


3.12 Completing an Amplifier


3.13 Summary


4. Building an Amplifier


4.1 The Basic Design


4.2 The Front-End: IPS, VAS and Pre-Drivers


4.3 Output Stage: Drivers and Outputs


4.4 Heat Sink and Thermal Management


4.5 Protection Circuits


4.6 Power Supply


4.7 Grounding


4.8 Building the Amplifier


4.9 Testing the Amplifier


4.10 Troubleshooting


4.11 Performance


4.12 Scaling


4.13 Upgrades


5. Noise


5.1. Signal-to-Noise Ratio


5.2. A-weighted Noise Specifications


5.3 Noise Power and Noise Voltage


5.4 Noise Bandwidth


5.5 Noise Voltage Density and Spectrum


5.6 Relating Input Noise Density to Signal-to-Noise Ratio


5.7 Amplifier Noise Sources


5.8 Thermal Noise


5.9 Shot Noise


5.10 Bipolar Transistor Noise


5.11 JFET Noise


5.12. Op Amp Noise


5.13 Noise Simulation


5.14 Amplifier Circuit Noise


5.15 Excess Resistor Noise


5.16 Zener and LED Noise


6. Negative Feedback Compensation and Slew Rate


6.1 How Negative Feedback Works


6.2 Input-referred Feedback Analysis


6.3 Feedback Compensation and Stability


6.4 Feedback Compensation Principles


6.5 Evaluating Loop Gain


6.6 Evaluating Stability


6.7 Compensation Loop Stability


6.8 Slew Rate


7. Amplifier Classes, Output Stages and Efficiency


7.1 Class A, AB and B Operation


7.2 The Complementary Emitter Follower Output Stage


7.3 Output Stage Efficiency


7.4 Complementary Feedback Pair Output Stages


7.5 Stacked Output Stages


7.6 Classes G and H


7.7 Class D


8. Summary of Amplifier Design Considerations


8.1 Power and Loads


8.2 Sizing the Power Supply


8.3 Sizing the Output Stage


8.4 Sizing the Heat Sink


8.5 Protecting the Amplifier and Loudspeaker


8.6 Power and Ground Distribution


8.7 Other Considerations


Part 2: Advanced Power Amplifier Design


9. Input and VAS Circuits


9.1 Single-Ended IPS-VAS


9.2 JFET Input Stages


9.3 Buffered Input Stages


9.4 CFP Input Stages


9.5 Complementary IPS and Push-Pull VAS


9.6 Unipolar Input Stage and Push-Pull VAS


9.7 Input Common Mode Distortion


9.8 Early Effect


9.9 Baker Clamps


9.10 Current Feedback Amplifiers


9.11 Example IPS/VAS


10. DC Servos


10.1 Origins and Consequences of DC Offset


10.2 DC Servo Basics


10.3 The Servo Is in the Signal Path


10.4 DC Offset Detection and Protection


10.5 DC Servo Example


10.6 Eliminating the Input Coupling Capacitor


10.7 DC Servo Design Issues and Nuances


11. Advanced Forms of Feedback Compensation


11.1 Understanding Stability Issues


11.2 Miller Compensation


11.3 Miller Input Compensation


11.4 Two-Pole Compensation


11.5 Transitional Miller Compensation


11.6 A Vertical MOSFET TMC Amplifier Example


11.7 Conclusion


12. Output Stage Design and Crossover Distortion


12.1 The Class AB Output Stage


12.2 Static Crossover Distortion


12.3 Optimum Bias and Bias Stability


12.4 Output Stage Driver Circuits


12.5 Output Transistor Matching Considerations


12.6 Dynamic Crossover Distortion


12.7 The Output Emitter Resistors


12.8 Output Networks


12.9 Output Stage Frequency Response and Stability


12.10 Sizing the Output Stage


12.11 Delivering High Current


12.12 Driving Paralleled Output Stages


12.13 Advanced Output Transistors


13. Output Stages II


13.1. VAS Output Impedance and Stability


13.2. Complementary Feedback Pair


13.3 Output Stages with Gain


13.4 Bryston Output Stage


13.5 ThermalTrak¿ Output Stage


13.6 Class A Output Stage


13.7 Crossover Displacement (Class XD¿)


13.8 Double Cross¿ Output Stage


13.9 Sliding Bias and Non-switching Output Stages


13.10 LT1166 Output Stage


13.11 Measuring Output Stage Distortion


13.12 Setting the Bias


14. MOSFET Power Amplifiers


14.1 MOSFET Types and Characteristics


14.2 MOSFET Advantages and Disadvantages


14.3 Lateral vs. Vertical Power MOSFETs


14.4 Parasitic Oscillations


14.5 Biasing Power MOSFETs


14.6 Crossover Distortion


14.7 Driving Power MOSFETs


14.8 Paralleling and Matching MOSFETs


14.9 Simulating MOSFET Power Amplifiers


14.10 A Lateral MOSFET Power Amplifier Design


14.11 A Vertical MOSFET Power Amplifier Design


15. Error Correction


15.1 Feedforward Error Correction


15.2 Hawksford Error Correction


15.3 Error Correction for MOSFET Output Stages


15.4 Stability and Compensation


15.5 Performance and Design Issues


15.6 Circuit Refinements and Nuances


15.7 A MOSFET Power Amplifier with Error Correction


16. Other Sources of Distortion


16.1 Distortion Mechanisms


16.2 Early Effect Distortion


16.3 Junction Capacitance Distortion


16.4 Grounding Distortion


16.5 Power Rail Distortion


16.6 Input Common Mode Distortion


16.7 Resistor Distortion


16.8 Capacitor Distortion


16.9 Inductor and Magnetic Distortions


16.10 Magnetic Induction Distortion


16.11 Fuse, Relay and Connector Distortion


16.12 Load Induced Distortion


16.13 EMI-Induced Distortion


16.14 Thermally Induced Distortion (Memory Distortion)


Part 3: Real World Design Considerations


17. Output Stage Thermal Design and Stability


17.1 Power Dissipation vs. Power and Load


17.2 Thermal Design Concepts and Thermal Models


17.3 Transistor Power Ratings


17.4 Sizing the Heat Sink


17.5 The Bias Spreader and Temperature Compensation


17.6 Thermal Bias Stability


17.7 Thermal Lag Distortion


17.8 ThermalTrak¿ Power Transistors


17.9 A ThermalTrak¿ Power Amplifier


18. Safe Area and Short Circuit Protection


18.1 Power Transistor Safe Operating Area


18.2 Output Stage Safe Operating Area


18.3 Short Circuit Protection


18.4 Safe Area Limiting Circuits


18.5 Testing Safe Area Limiting Circuits


18.6 Protection Circuits for MOSFETs


18.7 Protecting the Driver Transistors


18.8 Loudspeaker Protection Circuits


19. Power Supplies and Grounding


19.1 The Design of the Power Supply


19.2 Sizing the Transformer


19.3 Sizing the Rectifier


19.4 Sizing the Reservoir Capacitors


19.5 Rectifier Speed


19.6 Regulation and Active Smoothing of the Supply


19.7 SPICE Simulation of Power Supplies


19.8 Soft-Start Circuits


19.9 Grounding Architectures


19.10 Radiated Magnetic Fields


19.11 Safety Circuits


19.12 DC on the Mains


19.13 Switching Power Supplies


20. Switching Power Supplies


20.1 Line DC Supply


20.2 Isolated DC-DC Converter


20.3 Buck Converters


20.4 Synchronous Buck Converter


20.5 Boost Converters


20.6 Buck-Boost Converters


20.7 Boost-Buck Converters


20.8 Cuk Converters


20.9 Forward Converters


20.10 Flyback Converters


20.11 Half-bridge Converters


20.12 Full-bridge Converters


20.13 Control ICs for PWM Converters


20.14 Resonant Converters


20.15 Quasi-Resonant Converters


20.16 EMI Filtering and Suppression


20.17 Power Factor Correction


20.18 Auxiliary Supplies


20.19 Switching Supplies for Power Amplifiers


20.20 Switching Supplies for Class D Amplifiers


21. Clipping Control and Civilized Amplifier Behavior


21.1 The Incidence of Clipping


21.2 Clipping and Sticking


21.3 Negative Feedback and Clipping


21.4 Baker Clamps


21.5 Soft Clipping


21.6 Current Limiting


21.7 Parasitic Oscillation Bursts


21.8 Selectable Output Impedance


22. Interfacing the Real World


22.1 The Amplifier-Loudspeaker Interface


22.2 EMI Ingress ¿ Antennas Everywhere


22.3 Input Filtering


22.4 Input Ground Loops


22.5 Mains Filtering


22.6 EMI Egress


22.7 EMI Susceptibility Testing


Part 4: Simulation and Measurement


23. SPICE Simulation


23.1 Linear Technologies LTspice®


23.2 Schematic Capture


23.3 DC, AC and Transient Simulation


23.4 Distortion Analysis


23.5 Noise Analysis


23.6 Controlled Voltage and Current Sources


23.7 Swept and Stepped Simulations


23.8 Plotting Results


23.9 Subcircuits


23.10 SPICE Models


23.11 Simulating a Power Amplifier


23.12 Middlebrook and Tian Probes


24. SPICE Models and Libraries


24.1 Verifying SPICE Models


24.2 Tweaking SPICE Models


24.3 Creating a SPICE Model


24.4 JFET Models


24.5 Vertical Power MOSFET Models


24.6 LTspice VDMOS Models


24.7 The EKV Model


24.8 Lateral Power MOSFETs


24.9 Installing Models


25. Audio Instrumentation


25.1 Basic Audio Test Instruments


25.2 Dummy Loads


25.3 Simulated Loudspeaker Loads


25.4 THD Analyzer


25.5 PC-Based Instruments


25.6 Purpose-Built Test Gear


26. Distortion and its Measurement


26.1 Nonlinearity and its Consequences


26.2 Total Harmonic Distortion


26.3 SMPTE IM


26.4 CCIF IM


26.5 Transient Intermodulation Distortion (TIM) and SID


26.6 Phase Intermodulation Distortion (PIM)


26.7 Interface Intermodulation Distortion (IIM)


26.8 Multi-Tone Intermodulation Distortion (MIM)


26.9 Highly Sensitive Distortion Measurement


26.10 Input-Referred Distortion Analysis


27. Other Amplifier Tests


27.1 Measuring Damping Factor


27.2 Sniffing Parasitic Oscillations


27.3 EMI Ingress Susceptibility


27.4 Burst Power and Peak Current


27.5 PSRR Tests


27.6 Low-frequency Tests


27.7 Back-Feeding Tests


Part 5: Topics in Amplifier Design


28. The Negative Feedback Controversy


28.1 How Negative Feedback Got its Bad Rap


28.2 Negative Feedback and Open-loop Bandwidth


28.3 Spectral Growth Distortion


28.4 Global Versus Local Feedback


28.5 Timeliness of Correction


28.6 EMI from the Speaker Cable


28.7 Stability and Burst Oscillations


28.8 Clipping Behavior


29. Amplifiers without Negative Feedback


29.1 Design Tradeoffs and Challenges


29.2 Additional Design Techniques


29.3 An Example Design with No Feedback


29.4 A Feedback Amplifier with Wide Open-loop Bandwidth


30. Balanced and Bridged Amplifiers


30.1 Balanced Input Amplifiers


30.2 Bridged Amplifiers


30.3 Balanced Amplifiers


31. Integrated Circuit Power Amplifiers and Drivers


31.1 IC Power Amplifiers


31.2 The Gain Clones


31.3 The Super Gain Clone


31.4 Integrated Circuit Drivers


31.5 Summary


32. Professional Power Amplifiers


32.1 Environment and Special Needs


32.2 Output Stages and Output Power


32.3 Power Supplies


32.4 Cooling and Heat Removal


32.5 Microcomputers


32.6 Networked Control and Monitoring


32.7 Digital Signal Processing


32.8 DSP-Based Protection and Monitoring


32.9 The DSP to Class D Interface


32.10 Programming


32.11 Audio Networking


Part 6: Class D Audio Amplifiers


33. Class D Audio Amplifiers


33.1 How Class D Amplifiers Work


33.2 Class D Output Stages


33.3 Bridge Tied Load Designs


33.4 Negative Feedback


33.5 Noise Shaping in PWM Modulators with Feedback


33.6 Summary


34. Class D Design Issues


34.1 The Output Filter and EMI


34.2 Spread Spectrum Class D


34.3 Filterless Class D Amplifiers


34.4 Buck Converters and Class D Amplifiers


34.5 Sources of Distortion


34.6 Bus Pumping


34.7 Power Supply Rejection


34.8 Power Supplies for Class D Amplifiers


34.9 Damping Factor and Load Invariance


34.10 Summary


35. Alternative Class D Modulators


35.1 Self-Oscillating Loops


35.2 Sigma-Delta Modulators


35.3 Digital Modulators


36. Class D Measurement, Efficiency and Designs


36.1 Hybrid Class D


36.2 Measuring Class D Amplifiers


36.3 Achievable Performance


36.4 Integrated Circuits for Class D Amplifiers


36.5 Example Class D Amplifiers and Measurements