Gerstley Borate, also called  Calcium Borate, similar to  Colemanite, 3, pound , other weights available of course

No common natural material comes anywhere close to melting like Gerstley Borate (GB). It begins to melt between 1550F and 1600F and is a clear amber glass by 1750F and ultraclear and glossy by cone 06 (Ulexite melts better but it is not commonly in use in ceramics). It has thus been a staple among potters for many years. 50% can be found in many cone 06-02 glazes, up to 30% in cone 6 glazes. Gerstley Borate is also very plastic and thus suspends and hardens glazes as they dry. In fact, few clays have the plasticity and the ability to retain water that GB has. A GB slurry can take many hours to dewater on a plaster batt, even in a very think layer. Thus it is common to find Gerstley Borate based recipes having no clay content.

GB natural source of boron that was mined in southern California for many years. Mineralogically it is a combination of colemanite, ulexite and high plasticity clay (likely hectorite). The melting behavior of ulexite and colemanite is quite different, the unusual early melting behavior GB exhibits this, it suddenly implodes to a brown opaque melt (because of the earlier fluxing of ulexite) which later turns transparent (when the colemanite joins in).

Since GB glazes melt well and are so easy to make, most people have overlooked issues surrounding its use. Glazes with high GB content that host potentially toxic metallic colorants or other materials are often assumed to be non-leachable because they melt well (where as, in fact, they may have an unbalanced chemistry). Gerstley Borate has almost no Al2O3, this is a problem because glazes need it and Al2O3 is normally sourced from clays, especially kaolin. But since GB is so plastic, adding more plastic materials to a glaze causes excessive drying shrinkage (producing cracks and ultimately crawling). One solution is to use calcined kaolin. Another option is to source Al2O3 from feldspar, however to get enough to create a stable glass oversupplies KNaO and causes crazing.

High GB glazes often have alot of micro-bubbles in the fired glass and micro-dimples on the fired glaze surface (most visible in transparents). Slurries also tend to flocculate and gel causing problems with glaze application, drying and adhesion. Because this material melts so well, potters who use it have been willing to endure alot of these issues. One common low to middle fire transparent, for example, has 50% GB and adds 30% kaolin to that, producing a slurry the dries even more slowly, gels quite badly and shrinks considerably as it dries.

The mine was closed in 2000 and remaining stocks were to be depleted in 2-3 years. There was alarm across the ceramic community in North America leading up to and after the closure (because Gerstley Borate formed the basis of so many glazes). However in June 2011, the supplier, Lagunaclay.com, announced that there was again a large supply still available. For the best information on substitutes visit gerstleyborate.com. There is a page on the site dedicated to understanding what Gerstley Borate was chemically, physically and mineralogically. There are a number of materials that have been developed as substitutes over the years, these are outlined at the website also.

However the best approach is to finding an alternative is the use of ceramic chemistry on a glaze-by-glaze basis (to substitute other materials). In many cases, it is better to use frits to supply the CaO and B2O3, they are less volatile, more consistent and reliable and do not flocculate or gel the glaze as Gerstley Borate does. In cases where frits cannot deliver the needed chemistry, Ulexite can be employed.

Prior to, and during the decade of uncertainty about the future of this material, the supplier did not provide updated chemistry information. It was during this time that many companies promoted substitutes. We rationalized it (as explained at http://gerstleyborate.com) as 24% CaO, 4% MgO, 0.5% K2O, 4% Na2O, 2% Al2O3, 25% B2O3, 14% SiO2, 0.5% Fe2O3 and 14% 26% LOI. In June 2011 we changed the chemistry provided here to the one provided by Laguna on their website (rounded to 1 decimal). This new chemistry has more B2O3 and less CaO (other oxide amounts are fairly similar).



............................................................................................................................................................................. Testing Policy: Testing of raw materials should be an integral part of ceramic or glass making / manufacturing. Upon receipt of any new material, we strongly recommend that you test the material. "Paul Brown Studio Arts and Supplies" . has no control over either the variations that may occur in the natural materials or their application. All products are supplied as is from the manufacturer. No additional processing or technical support is supplied. Therefore, our products are sold with the understanding that the user is solely responsible for determining suitability for any purpose and the results obtained. There are no warranties expressed or implied, regarding the user’s finished product or results. Return Policy: Returns are accepted 14 days from date of shipment only if the box has not been opened. Furthermore, the labeling and packaging must be in its original condition. If the box has been opened then that will exempt it from being returned. All returns must be authorized by "Paul Brown Studio Arts and Supplies". There is a 25% restocking fee for all returns plus the price for the return shipping charges. No refund will be granted if returned without prior authorization from "Paul Brown Studio Arts and Supplies". No refund will be granted if shipment is refused by buyer or an incorrect address is given (change of address once shipped is prohibited by our shipping carriers). We will be happy to answer any questions regarding our products prior to ordering to prevent a return situation for you.

Return Policy: No Returns