238- tir95

Médaille uniface en bronze ou cuivre, Belgique .
Refrappe XXe vers 1950, sur la modèle d'une médaille XVIIe (Avers).
Petits défauts de patine minimes .

Graveur / Artiste / Sculpteur : A déterminer .

Dimensions : 68 mm .
Poids : 117 g .
Métal : bronze ou cuivre.
Poinçon sur la tranche (mark on the edge)  : J Fonson "568" .

Envoi rapide et soigné.

The stand is not for sale .
Le support n'est pas à vendre.



Simon Stevin (en néerlandais : [ˈsimɔn ˈsteːvɪn]), né probablement en 15481 à Bruges, et mort en 1620 à Leyde, est un comptable, puis mathématicien, mécanicien, inventeur et ingénieur, et enfin à la fois militaire du génie et gestionnaire des finances, conseiller technique et fondateur d'une école d'ingénieur. Né en Flandre (Pays-Bas des Habsbourg), ce savant défenseur du néerlandais est un des célèbres émigrés flamands de Hollande.
L'homme et sa devise

Ce comptable de formation, défenseur d'un système de notation décimale des nombres est connu pour son texte « De Thiende », paru en 1585 et traduit, par lui, la même année en français sous le titre « La Disme ».

« Wonder en is gheen wonder », c'est-à-dire en français « merveille n'est point miracle », est la devise flamande que se donne Simon Stevin, rationaliste enthousiaste, sur la page de garde de son ouvrage De beghinselen der weeghconst (Les éléments d'art de peser), publié en 15862.

Le savant Stevin est aussi convaincu qu'un âge de raison a existé autrefois, à l'instar de son jeune contemporain Hugo Grotius. Jeune voyageur, il a entendu et souvent partiellement compris les divers dialectes bas-allemands de Baltique et des côtes de la mer du Nord. Ses rencontres avec un grand nombre de groupes flamands ou néerlandophones, en réalité des lointains émigrés venus aménager les côtes marécageuses à partir du XIIe siècle, ont renforcé sa conviction.

Patriote de la République des Provinces-Unies, l'émigré s'efforce de rassembler les vieilles koïnés flamandes dispersées en une langue à part entière et s'évertue notamment à trouver un équivalent néerlandais pour tous les termes scientifiques et techniques latins ou français : ainsi le mot hollandais pour mathématiques n'a pas de racine grecque mais germanique : wiskunde. Stevin voyait l'avantage du néerlandais dans le nombre de mots monosyllabiques et la faculté de composer des radicaux3.

S'il s'est illustré pour la défense de la langue flamande ou néerlandaise, il est principalement connu pour ses travaux pionniers en mécanique, en optique, en statique des fluides. On peut retenir la volonté constante dans les œuvres de Simon Stevin d'une didactique et d'une grande clarté.

Le jeune marchand est devenu dans les années 1580 un technicien et un inventeur. Autour de 1600, il a contribué à améliorer le char à voile, engin mobile remarquable, invention médiévale mais alors le véhicule le plus rapide le long des plages durcies par le sable humide.

L'étude de la chute des corps du haut de l'église de Delft et du mouvement d'objets sur des plans inclinés avant 1586, puis la défense des conceptions astronomiques de Copernic font de lui un précurseur des travaux de Galilée. Il figure parmi les premiers découvreurs de la pesanteur de l'air, ainsi que des autres milieux fluides.
Éléments biographiques

Il est le fils de d'Anthonis Stevin et de Cathelyne van der Poort4. La famille de sa mère, très pratiquante, est attachée à la confession calviniste.

Il est d'abord commis puis apprenti comptable et clerc auprès d’un marchand à Anvers de 1564 aux années 1570. Mais, dans le but de rédiger un "traité de pilotage", il décide de partir naviguer sur la mer Baltique, visitant diverses contrées et travaillant en accompagnant des marchands néerlandophones dans les pays du pourtour, comme les côtes de Pologne et de Lituanie, d'Allemagne du Nord et de Suède. Il termine son périple en Norvège, prenant en mer du Nord le chemin maritime de la « voie du Nord », bien au-delà de Trondheim.

De retour au pays natal, Stevin, comptable et pilote chevronné, est employé aux finances du port de sa ville natale Bruges en 1577. Dans le même temps, il est inscrit à la chambre de rhétorique de Bruges De Heilige Gheest (le Saint-Esprit), où il développe quelques idées sur la place de la langue flamande ou néerlandaise.

Il semble que l'ensemble de sa famille persécutée s'expatrie l'année suivante en Hollande : l'émigré voyage à nouveau en Prusse, en Pologne, au Danemark, en Suède et en Norvège, pays qu'il décrit dans certaines de ses œuvres. De retour aux Pays-Bas en 1581, à 33 ans, le comptable publie à Anvers en flamand Tafelen van Interest un livre sur le calcul des intérêts bancaires, rapidement apprécié par les marchands et négociants hollandais. Simon Stevin s'inscrit en section mathématique à l'université de Leyde en 1583. Il publie l'année suivante Problematum geometricorum, ou Sur les problèmes de géométrie. Le géomètre débutant décompose les polyèdres en autant de formes planes, qui, étalées en deux dimensions, en constituent le patron.

C'est sans doute à Leyde que Stevin découvre l'œuvre d'Archimède dans la traduction de Maurolico intitulée les Monumenta (Palerme). L'ingénieur Stevin fait dès lors ses premières recherches sur les machines qu'il a vu fonctionner dans les différents arsenaux de la mer du Nord et de la Baltique. La fin des années 1580 voit la parution, chez l'imprimeur anversois Christophe Plantin, de ses principaux ou
d’écluses, qui fut de la plus haute importance pour les Pays-Bas et eut de nombreux brevets pour l'amélioration et la construction de nouveaux moulins.
Sciences
Œuvres mathematiques, 1634

Le "traité de Statique", rédigé en flamand et publié format in quarto en 1586 à Leyde, fait suite aux "Problèmes géométriques", publiés format in quarto, à Leyde en 1585. Ses deux contributions font de son auteur un géomètre et mathématicien/physicien reconnu en Hollande. Ces œuvres complètes sont éditées également à Leyde en 1605 en deux volumes in folio. C'est seulement en 1634 qu'elles sont traduites dans le même format à Leyde, en latin par Snellius et en français par Albert Girard.
Mathématiques
« Merveille n'est pas mystère » (Een wonder en is gheen wonder) : de l'impossibilité du mouvement perpétuel, Stevin fait un principe pour la détermination des équilibres (frontispice de « l'Art de peser »).

La comptabilité en partie double peut avoir été connue par Stevin soit lorsqu'il était clerc à Anvers, soit à travers les œuvres des auteurs italiens comme Luca Pacioli et Girolamo Cardano. Cependant, il fut le premier à recommander l’utilisation de comptes impersonnels dans la comptabilité nationale. Il le pratiqua pour le prince Maurice et le recommanda à Sully.

Son plus grand succès fut un petit traité appelé De Thiende (La disme), publié comme la plupart de ses écrits en néerlandais en 1585 et traduit par lui la même année en français dans L'Arithmetique.

Les fractions décimales avaient été employées pour l’extraction des racines carrées quelque cinq siècles avant son époque mais personne avant Stevin n'avait montré l'intérêt de son emploi quotidien. L'appendice de ce texte comprend des paragraphes dédiés aux arpenteurs, aux maîtres de monnaies, aux commerçants...
Notation décimale pour 19,178.

Stevin fut si conscient de l’importance de cette contribution qu’il déclara que l’utilisation universelle du système décimal était inéluctable. La notation qu'il propose est plutôt difficile à manier : les décimales sont affectées de leur puissance de dix, marquées par un petit cercle autour de l'exposant.

Stevin note d'ailleurs ainsi dans les équations algébriques les nombres élevés à une puissance : des nombres encerclés dénotent de simples exposants. Stevin a conscience des exposants fractionnels sans les utiliser, mais ne considère jamais d'exposants négatifs.

La notation décimale de Stevin trouva un écho dans l'Europe savante. La virgule décimale fut introduite par Bartholomäus Pitiscus dans ses tables trigonométriques (1612), et fut reprise par John Napier dans ses deux ouvrages sur les tables de logarithmes (1614 et 1619).

Sa grande œuvre mathématique est L'Arithmetique publiée en français chez Christophe Plantin en 1585 et qui reprend, à la manière de Raphaël Bombelli qu'il considère comme le « grand arithmeticien de nostre temps6 », les connaissances en arithmétique et en algèbre. Il décrit ainsi la résolution des équations des quatre premiers degrés, traduit les quatre premiers livres des Arithmétiques de Diophante, republie en traduisant ses Tables d'intérêts et La Disme, puis ce défenseur des nombres irrationnels commente le livre X des Éléments d'Euclide sur les nombres incommensurables. On retrouve dans cette deuxième partie la tradition des arithmétiques et des algèbres du même type que celles de Michael Stifel.

Stevin innova finalement peu en géométrie, mais fut le premier à montrer comment construire un polyèdre en le développant sur un plan. Il reprend les travaux d'Albrecht Dürer sur la perspective et développe les sciences mathématiques (par exemple géographie, cosmographie) en langue néerlandaise.

Ses œuvres mathématiques sont publiées en trois langues simultanément en néerlandais (Wiscondighe Gedachtenissen), en français (traduction de Jean Tuning) et en latin (traduction de Willebrord Snell) en 1605 et en 1608. Albert Girard les regroupe en 1634 dans les Mémoires mathématiques contenant ce en quoy s'est exercé le très excellent prince et seigneur Maurice, prince d'Orange etc, écrit premièrement en bas Allemand par Simon Stevin de Bruges, ce qui permettra la diffusion en France des idées de Simon Stevin.
Musique

Simon Stevin est l'auteur de la division de la gamme en douze demi-tons tempérés égaux, telle que nous la connaissons aujourd'hui7. En 1529, Pietro Aaron, religieux italien et théoricien de la musique, est préoccupé par l'incohérence de la gamme de Pythagore qui, louant justesse et rigueur mathématique, mène à la dissonance et à la complexité. Dissonance, car en bouclant le cycle des quintes on aboutit à un si# qui présente un comma d'écart avec le do. C'est le fameux comma pythagoricien. Complexité, parce qu'en devenant chromatique, la gamme divise chacun des cinq tons en deux demi-tons non identiques, tel do# et réb, accusant, eux aussi, un comma de différence. Ce chanoine de la cathédrale de Rimini triche alors légèrement sur la valeur des quintes pour tenter de refermer le cycle avec jPublications

Stevin écrivit sur d’autres sujets scientifiques ; il publia notamment :

    Tafelen van Interest (Tables d’intérêt) en 1582 ;
    Problematum geometricorum en 1583 ;
    De Thiende (La dîme) en 1585 ;
    Dialectike ofte bewysconst (La dialectique ou art de la démonstration) en 1585 ;
    L'Arithmétique en 1585 ;
    La Pratique d'arithmétique en 1585 ;
    De Beghinselen der Weeghconst (la Statique ou l'Art de peser), en 1586 ;
    De Beghinselen des Waterwichts (Principes sur le poids de l’eau) en 1586 sur le sujet de l’hydrostatique ;
    Vita Politica. Het Burgherlick leven (De la vie civile, cf. infra) en 1590 ;
    De Sterktenbouwing (De la Construction des fortifications ou "méthode de fortifier les places") publié format in quarto en 1594 ;
    Appendice Algebraique qu’il présenta comme un traitement uniforme pour la résolution des équations algébriques ;
    De Havenvinding (Le repérage en mer) en 1599, traduit en anglais par Edward Wright l'année même de sa parution ; Ce Traité sur les ports de mer, rédigé en flamand en 1599, est tradui
Simon Stevin est l'auteur de la division de la gamme en douze demi-tons tempérés égaux, telle que nous la connaissons aujourd'hui7. En 1529, Pietro Aaron, religieux italien et théoricien de la musique, est préoccupé par l'incohérence de la gamme de Pythagore qui, louant justesse et rigueur mathématique, mène à la dissonance et à la complexité. Dissonance, car en bouclant le cycle des quintes on aboutit à un si# qui présente un comma d'écart avec le do. C'est le fameux comma pythagoricien. Complexité, parce qu'en devenant chromatique, la gamme divise chacun des cinq tons en deux demi-tons non identiques, tel do# et réb, accusant, eux aussi, un comma de différence. Ce chanoine de la cathédrale de Rimini triche alors légèrement sur la valeur des quintes pour tenter de refermer le cycle avec j