1928 HOLIDAY CHRISTMAS ICE BOX CHEST DELIVERY INDUSTRY REFRIGERATION AD 28451 

DATE OF THIS  ** ORIGINAL **  ILLUSTRATED COVER: 1928

SPECIAL CHARACTERISTICS/DESCRIPTIVE WORDS:  Originally founded in 1917 as the National Association of Ice Industries, our proud trade association has represented commercial industry producers of block ice and packaged ice internationally on all seven continents. The hallmark of our vision as an association is our member commitment to food safety and education at all levels - regulatory, retailer, and consumer - ?that ICE IS FOOD
The mission of the International Packaged Ice Association (IPIA) is to promote the growth and superior business practices for the packaged ice industry through the ongoing development and management of standards and value-added services that enhance the image of the industry to the consumers and trade partners. IPIA will achieve these objectives through proactive leadership directed by priorities set by its member companies.

The term refrigeration refers to the process of removing heat from an enclosed space or substance for the purpose of lowering the temperature. Refrigeration can be considered an artificial, or human-made, cooling method.

Refrigeration refers to the process by which energy, in the form of heat, is removed from a low-temperature medium and transferred to a high-temperature medium. This work of energy transfer is traditionally driven by mechanical means, but can also be driven by heat, magnetism, electricity, laser, or other means. Refrigeration has many applications, including household refrigerators, industrial freezers, cryogenics, and air conditioning. Heat pumps may use the heat output of the refrigeration process, and also may be designed to be reversible, but are otherwise similar to air conditioning units.

Refrigeration has had a large impact on industry, lifestyle, agriculture, and settlement patterns. The idea of preserving food dates back to the ancient Roman empire. Mechanical refrigeration has rapidly evolved in the last century, from ice harvesting to temperature-controlled rail cars. The introduction of refrigerated rail cars contributed to the westward expansion of the United States, allowing settlement in areas that were not on main transport channels such as rivers, harbors, or valley trails. Settlements were also developing in infertile parts of the country, filled with newly discovered natural resources.

These new settlement patterns sparked the building of large cities which are able to thrive in areas that were otherwise thought to be inhospitable, such as Houston, Texas, and Las Vegas, Nevada. In most developed countries, cities are heavily dependent upon refrigeration in supermarkets in order to obtain their food for daily consumption. The increase in food sources has led to a larger concentration of agricultural sales coming from a smaller percentage of farms. Farms today have a much larger output per person in comparison to the late 1800s. This has resulted in new food sources available to entire populations, which has had a large impact on the nutrition of society.

Histor

Earliest forms of cooling

The seasonal harvesting of snow and ice is an ancient practice estimated to have begun earlier than 1000 BC. A Chinese collection of lyrics from this time period known as the Shijing, describes religious ceremonies for filling and emptying ice cellars. However, little is known about the construction of these ice cellars or the purpose of the ice. The next ancient society to record the harvesting of ice may have been the Jews in the book of Proverbs, which reads, "As the cold of snow in the time of harvest, so is a faithful messenger to them who sent him." Historians have interpreted this to mean that the Jews used ice to cool beverages rather than to preserve food. Other ancient cultures such as the Greeks and the Romans dug large snow pits insulated with grass, chaff, or branches of trees as cold storage. Like the Jews, the Greeks and Romans did not use ice and snow to preserve food, but primarily as a means to cool beverages. Egyptians cooled water by evaporation in shallow earthen jars on the roofs of their houses at night. The ancient people of India used this same concept to produce ice. The Persians stored ice in a pit called a Yakhchal and may have been the first group of people to use cold storage to preserve food. In the Australian outback before a reliable electricity supply was available many farmers used a Coolgardie safe, consisting of a room with hessian (burlap) curtains hanging from the ceiling soaked in water. The water would evaporate and thereby cool the room, allowing many perishables such as fruit, butter, and cured meats to be kept.

Ice harvesting

Before 1830, few Americans used ice to refrigerate foods due to a lack of ice-storehouses and iceboxes. As these two things became more widely available, individuals used axes and saws to harvest ice for their storehouses. This method proved to be difficult, dangerous, and certainly did not resemble anything that could be duplicated on a commercial scale.

Despite the difficulties of harvesting ice, Frederic Tudor thought that he could capitalize on this new commodity by harvesting ice in New England and shipping it to the Caribbean islands as well as the southern states. In the beginning, Tudor lost thousands of dollars, but eventually turned a profit as he constructed icehouses in Charleston, Virginia and in the Cuban port town of Havana. These icehouses as well as better insulated ships helped reduce ice wastage from 66% to 8%. This efficiency gain influenced Tudor to expand his ice market to other towns with icehouses such as New Orleans and Savannah. This ice market further expanded as harvesting ice became faster and cheaper after one of Tudor's suppliers, Nathaniel Wyeth, invented a horse-drawn ice cutter in 1825. This invention as well as Tudor's success inspired others to get involved in the ice trade and the ice industry grew.

Ice became a mass-market commodity by the early 1830s with the price of ice dropping from six cents per pound to a half of a cent per pound. In New York City, ice consumption increased from 12,000 tons in 1843 to 100,000 tons in 1856. Boston's consumption leapt from 6,000 tons to 85,000 tons during that same period. Ice harvesting created a "cooling culture" as majority of people used ice and iceboxes to store their dairy products, fish, meat, and even fruits and vegetables. These early cold storage practices paved the way for many Americans to accept the refrigeration technology that would soon take over the country.

Refrigeration research

The history of artificial refrigeration began when Scottish professor William Cullen designed a small refrigerating machine in 1755. Cullen used a pump to create a partial vacuum over a container of diethyl ether, which then boiled, absorbing heat from the surrounding air. The experiment even created a small amount of ice, but had no practical application at that time.

In 1758, Benjamin Franklin and John Hadley, professor of chemistry, collaborated on a project investigating the principle of evaporation as a means to rapidly cool an object at Cambridge University, England. They confirmed that the evaporation of highly volatile liquids, such as alcohol and ether, could be used to drive down the temperature of an object past the freezing point of water. They conducted their experiment with the bulb of a mercury thermometer as their object and with a bellows used to quicken the evaporation; they lowered the temperature of the thermometer bulb down to -14 °C (7 °F), while the ambient temperature was 18 °C (65 °F). They noted that soon after they passed the freezing point of water 0 °C (32 °F), a thin film of ice formed on the surface of the thermometer's bulb and that the ice mass was about a 6.4 millimetres (1/4 in) thick when they stopped the experiment upon reaching -14 °C (7 °F). Franklin wrote, "From this experiment, one may see the possibility of freezing a man to death on a warm summer's day". In 1805, American inventor Oliver Evans described a closed vapor-compression refrigeration cycle for the production of ice by ether under vacuum.

In 1820, the English scientist Michael Faraday liquefied ammonia and other gases by using high pressures and low temperatures, and in 1834, an American expatriate to Great Britain, Jacob Perkins, built the first working vapor-compression refrigeration system in the world. It was a closed-cycle that could operate continuously, as he described in his patent:

I am enabled to use volatile fluids for the purpose of producing the cooling or freezing of fluids, and yet at the same time constantly condensing such volatile fluids, and bringing them again into operation without waste.

His prototype system worked although it did not succeed commercially.

In 1842, a similar attempt was made by American physician, John Gorrie, who built a working prototype, but it was a commercial failure. Like many of the medical experts during this time, Gorrie thought too much exposure to tropical heat led to mental and physical degeneration, as well as the spread of diseases such as malaria. He conceived the idea of using his refrigeration system to cool the air for comfort in homes and hospitals to prevent disease. American engineer Alexander Twining took out a British patent in 1850 for a vapour compression system that used ether.

The first practical vapour-compression refrigeration system was built by James Harrison, a British journalist who had emigrated to Australia. His 1856 patent was for a vapour-compression system using ether, alcohol, or ammonia. He built a mechanical ice-making machine in 1851 on the banks of the Barwon River at Rocky Point in Geelong, Victoria, and his first commercial ice-making machine followed in 1854. Harrison also introduced commercial vapour-compression refrigeration to breweries and meat-packing houses, and by 1861, a dozen of his systems were in operation. He later entered the debate of how to compete against the American advantage of unrefrigerated beef sales to the United Kingdom. In 1873 he prepared the sailing ship Norfolk for an experimental beef shipment to the United Kingdom, which used a cold room system instead of a refrigeration system. The venture was a failure as the ice was consumed faster than expected.

The first gas absorption refrigeration system using gaseous ammonia dissolved in water (referred to as "aqua ammonia") was developed by Ferdinand Carré of France in 1859 and patented in 1860. Carl von Linde, an engineer specializing in steam locomotives and professor of engineering at the Technological University of Munich in Germany, began researching refrigeration in the 1860s and 1870s in response to demand from brewers for a technology that would allow year-round, large-scale production of lager; he patented an improved method of liquefying gases in 1876. His new process made possible using gases such as ammonia, sulfur dioxide (SO2) and methyl chloride (CH3Cl) as refrigerants and they were widely used for that purpose until the late 1920s.

Thaddeus Lowe, an American balloonist, held several patents on ice-making machines. His "Compression Ice Machine" would revolutionize the cold-storage industry. In 1869, other investors and he purchased an old steamship onto which they loaded one of Lowe's refrigeration units and began shipping fresh fruit from New York to the Gulf Coast area, and fresh meat from Galveston, Texas back to New York, but because of Lowe's lack of knowledge about shipping, the business was a costly failure.



ILLUSTRATOR/ARTIST:


ADVERT SIZE: SEE RULER SIDES IN PHOTO FOR DIMENSIONS ( ALL DIMENSIONS IN INCHES) 

**For multiple purchases please wait for our combined invoice. Shipping discount are ONLY available with this method.  Thank You.

At BRANCHWATER BOOKS we look for rare & unusual ADVERTISING, COVERS + PRINTS of commercial graphics from throughout the world.

Our AD's and COVER'S are ORIGINAL and 100% guaranteed --- (we code all our items to insure authenticity) ---- we stand behind this.

IF YOU WISH TO PURCHASE A RE-MASTERED COPY PLEASE SEE "MODERN POSTERS" IN OUR STORE.

As graphic collectors ourselves, we take great pride in doing the best job we can to preserve and extend the wonderful historic graphics of the past.

PLEASE LOOK AT OUR PHOTO CLOSELY AS IT IS (ALBEIT LOWER RESOLUTION) THE PRODUCT BEING SOLD.....NOT STOCK IMAGES 

**NOTE** : PAGES MAY SHOW AGE WEAR AND IMPERFECTIONS TO MARGINS, WITH CLOSED NICKS AND CUTS, WHICH DO NOT AFFECT AD IMAGE OR TEXT WHEN MATTED AND FRAMED.  SOMETIMES THE PAGES HAVE BEEN TRIMMED.. PLEASE NOTE THE ACTUAL SIZE OF SELLING AD IN THE ATTACHED PHOTO IMAGE... WHAT YOU SEE IS WHAT YOU GET...

We ship via United States Postal Service. We have a 4 day handling time not including weekends or holidays but normally we have all orders processed, packed and shipped within 48 hrs.

 

A Note to our international buyers (Including Canada).  Please read before placing a bid or buying an item:

**Import taxes, duties and charges are not included in the item price or shipping charges. These charges are the buyer's responsibility. Please check with your country's customs office to determine what these additional costs will be prior to bidding/buying on items. These charges are normally collected by the shipping company or when you pick the item up, this is not an additional shipping charge. We are not responsible for shipping times to international buyer's. Your country's customs may hold the package for a month or more. 

**We pride ourselves on quality products, great service, accurate gradations and fast shipping.**

BRANCHWATER BOOKS




 

YOUR AD WILL BE SHIPPED ROLLED IN A PROTECTIVE PLASTIC BAG IN AN 80mm (TWICE USPS RECOMMENDED) THICK, 2 INCHES IN DIAMETER (SO AS NOT TO STRESS THE PAPER) SHIPPING TUBE WITH PRESS TIGHT PLASTIC END CAPS.



28451

Powered by SixBit
Powered by SixBit's eCommerce Solution