This is a fantastic image directly from NASA’s archives and shows the wonders of the universe.
 
Note that some of the NASA spaces images have some slight blurring due to the subject, this is natural.  You have your choice of size and finish for the photo.   The size you choose may require cropping and the finished image may appear slightly different than the one shown.  If preferred a white border can be added above/below or left/right to allow all of the original image to print.  Unless requested when placing your order, your image may be cropped.  If you would like to see how a specific image will look for the size you have chosen, please contact us and indicate the size you are interested in.

Matte Finish:
E-Surface Photo Paper is by far our most popular photographic paper. As a professional paper, it boasts rich, sharp color that won't fade or yellow, creating beautiful prints that will last for years to come. 

Glossy (Metallic) finish:
Our Metallic Photo Paper features a unique pearlescent surface. It offers highly saturated colors, ultra-bright backgrounds, and will last a lifetime with typical home storage.

Butterfly Nebula

This celestial object looks like a delicate butterfly. But it is far from serene. What resemble dainty butterfly wings are actually roiling cauldrons of gas heated to more than 36,000 degrees Fahrenheit. The gas is tearing across space at more than 600,000 miles an hour—fast enough to travel from Earth to the Moon in 24 minutes!

A dying star that was once about five times the mass of the Sun is at the center of this fury. It has ejected its envelope of gases and is now unleashing a stream of ultraviolet radiation that is making the cast-off material glow. This object is an example of a planetary nebula, so-named because many of them have a round appearance resembling that of a planet when viewed through a small telescope.

The Wide Field Camera 3 (WFC3), a new camera aboard NASA's Hubble Space Telescope, snapped this image of the planetary nebula, catalogued as NGC 6302, but more popularly called the Bug Nebula or the Butterfly Nebula. WFC3 was installed by NASA astronauts in May 2009, during the servicing mission to upgrade and repair the 19-year-old Hubble telescope.

NGC 6302 lies within our Milky Way galaxy, roughly 3,800 light-years away in the constellation Scorpius. The glowing gas is the star's outer layers, expelled over about 2,200 years. The "butterfly" stretches for more than two light-years, which is about half the distance from the Sun to the nearest star, Alpha Centauri.

The central star itself cannot be seen, because it is hidden within a doughnut-shaped ring of dust, which appears as a dark band pinching the nebula in the center. The thick dust belt constricts the star's outflow, creating the classic "bipolar" or hourglass shape displayed by some planetary nebulae.

The star's surface temperature is estimated to be about 400,000 degrees Fahrenheit, making it one of the hottest known stars in our galaxy. Spectroscopic observations made with ground-based telescopes show that the gas is roughly 36,000 degrees Fahrenheit, which is unusually hot compared to a typical planetary nebula.

The WFC3 image reveals a complex history of ejections from the star. The star first evolved into a huge red-giant star, with a diameter of about 1,000 times that of our Sun. It then lost its extended outer layers. Some of this gas was cast off from its equator at a relatively slow speed, perhaps as low as 20,000 miles an hour, creating the doughnut-shaped ring. Other gas was ejected perpendicular to the ring at higher speeds, producing the elongated "wings" of the butterfly-shaped structure. Later, as the central star heated up, a much faster stellar wind, a stream of charged particles traveling at more than 2 million miles an hour, plowed through the existing wing-shaped structure, further modifying its shape.

The image also shows numerous finger-like projections pointing back to the star, which may mark denser blobs in the outflow that have resisted the pressure from the stellar wind.

The nebula's reddish outer edges are largely due to light emitted by nitrogen, which marks the coolest gas visible in the picture. WFC3 is equipped with a wide variety of filters that isolate light emitted by various chemical elements, allowing astronomers to infer properties of the nebular gas, such as its temperature, density, and composition.

The white-colored regions are areas where light is emitted by sulfur. These are regions where fast-moving gas overtakes and collides with slow-moving gas that left the star at an earlier time, producing shock waves in the gas (the bright white edges on the sides facing the central star). The white blob with the crisp edge at upper right is an example of one of those shock waves.

NGC 6302 was imaged on July 27, 2009, with Hubble's Wide Field Camera 3 in ultraviolet and visible light. Filters that isolate emissions from oxygen, helium, hydrogen, nitrogen, and sulfur from the planetary nebula were used to create this composite image.

These Hubble observations of the planetary nebula NGC 6302 are part of the Hubble Servicing Mission 4 Early Release Observations.

Object Name: NGC 6302 (Butterfly Nebula, Bug Nebula)
Image Type: Astronomical
Credit: NASA, ESA, and the Hubble SM4 ERO Team
Object Description: Planetary Nebula
Position (J2000): R.A. 17h 13m 43s.3
Dec. -37° 06' 10"
Constellation: Scorpius
Distance: 3,800 light-years (1,200 parsecs)
Dimensions: This image is 2.4 arcminutes (2.7 light-years or 0.8 parsecs) wide.

About these Data
Data Description: The Hubble images were created from data from proposal 11504: K. Noll and H. Bond (STScI) and B. Balick (University of Washington).
Instrument: WFC3/UVIS
Exposure Date(s): July 27, 2009
Exposure Time: 6.5 hours
Filters: F373N ([O II]), F469N (He II), F502N ([O III]), F656N (H-alpha), F658N ([N II]), and F673N ([S II])

Credit: NASA, ESA, and the Hubble SM4 ERO Team
Release Date: September 9, 2009
Color: The image is a composite of separate exposures made by the WFC3 instrument on the Hubble Space Telescope. Six filters were used to sample narrow wavelength ranges. The color results from assigning different hues (colors) to each monochromatic image. In this case, the assigned colors are:
F673N ([S II]) white
F658N ([N II]) orange
F656N (H-alpha) brown
F502N ([O III]) cyan
F469N (He II) blue
F373N ([O II]) purple