Canard Cycles

by Peter De Maesschalck, Freddy Dumortier, Robert Roussarie

Estimated delivery 3-12 business days

Format Hardcover

Condition Brand New

Description This book offers the first systematic account of canard cycles, an intriguing phenomenon in the study of ordinary differential equations. The canard cycles are treated in the general context of slow-fast families of two-dimensional vector fields. The central question of controlling the limit cycles is addressed in detail and strong results are presented with complete proofs.
In particular, the book provides a detailed study of the structure of the transitions near the critical set of non-isolated singularities. This leads to precise results on the limit cycles and their bifurcations, including the so-called canard phenomenon and canard explosion. The book also provides a solid basis for the use of asymptotic techniques. It gives a clear understanding of notions like inner and outer solutions, describing their relation and precise structure.
The first part of the book provides a thorough introduction to slow-fast systems, suitable for graduate students. The second and third parts will be of interest to both pure mathematicians working on theoretical questions such as Hilbert's 16th problem, as well as to a wide range of applied mathematicians looking for a detailed understanding of two-scale models found in electrical circuits, population dynamics, ecological models, cellular (FitzHugh–Nagumo) models, epidemiological models, chemical reactions, mechanical oscillators with friction, climate models, and many other models with tipping points.

Author Biography

Peter De Maesschalck, born in 1975, has been at Hasselt University, Belgium, for much of his career. His research focuses on slow-fast systems in low dimensional systems both from a qualitative point of view and from the point of view of asymptotic expansions. Part of his research is inspired by theoretical questions such as Hilbert's 16th problem on limit cycles of polynomial systems, another part is motivated by applications of slow-fast systems in, e.g., neurological models. Freddy Dumortier, born in 1947, emeritus professor at Hasselt University, is former president of the Belgian Mathematical Society and is currently permanent secretary of the Royal Flemish Academy of Belgium for Science and the Arts. He is the author of many papers and his main results deal with singularities and their unfolding, bifurcation theory, Liénard equations, Hilbert's 16th problem, slow-fast systems and the wave speed in reaction-diffusion equations.Robert Roussarie,born in 1944, is emeritus professor of the University of Bourgogne-Franche Comté. After a career at the CNRS he was professor at the Institut de Mathématique de Bourgogne. He worked on the theory of foliations, of singularities in differential geometry, bifurcations of vector fields and finally slow-fast systems. He also contributed to applied research on ferro-resonance in electrical networks, systems of ecological populations, systems in control theory and free interface problems in combustion theory.

Details

  • ISBN 3030792323
  • ISBN-13 9783030792329
  • Title Canard Cycles
  • Author Peter De Maesschalck, Freddy Dumortier, Robert Roussarie
  • Format Hardcover
  • Year 2021
  • Pages 408
  • Edition 1st
  • Publisher Springer Nature Switzerland AG
GE_Item_ID:140529475;

About Us

Grand Eagle Retail is the ideal place for all your shopping needs! With fast shipping, low prices, friendly service and over 1,000,000 in stock items - you're bound to find what you want, at a price you'll love!

Shipping & Delivery Times

Shipping is FREE to any address in USA.

Please view eBay estimated delivery times at the top of the listing. Deliveries are made by either USPS or Courier. We are unable to deliver faster than stated.

International deliveries will take 1-6 weeks.

NOTE: We are unable to offer combined shipping for multiple items purchased. This is because our items are shipped from different locations.

Returns

If you wish to return an item, please consult our Returns Policy as below:

Please contact Customer Services and request "Return Authorisation" before you send your item back to us. Unauthorised returns will not be accepted.

Returns must be postmarked within 4 business days of authorisation and must be in resellable condition.

Returns are shipped at the customer's risk. We cannot take responsibility for items which are lost or damaged in transit.

For purchases where a shipping charge was paid, there will be no refund of the original shipping charge.

Additional Questions

If you have any questions please feel free to Contact Us.