Sphere Ring
Fold Out Ball

This is a Tri Color Gold Plated, Solver Plated and Bronze Ring

Which folds out into a sphere like ball

It can be worn as a ring or a Pendant but there is no chain just the ring

Size  T UK / 10 US 

In Excellent Condition

Sorry about the poor quality photos. They dont do the coin justice which looks a lot better in real life

Starting at one penny. With No Reserve. If your the only bidder you win it for 1p....Grab a Bargain!!!!

AII have a lot of Unusual Rings Items on Ebay so why not > Check out my other items!


Bid with Confidence - Check My Almost 100% Positive Feedback

All My Items start at under £1 and I always discount shipping / postage on multiple items Check out my other items!

 All Payment Methods in All Major Currencies Accepted. 

Be sure to add me to your favourites list!

All Items Dispatched within 24 hours of Receiving Payment.

Instant Positive Feedback Automatically left upon receving payment

Thanks for Looking and Best of Luck with the Bidding!!


The Countries I Send to Include Afghanistan * Albania * Algeria * American Samoa (US) * Andorra * Angola * Anguilla (GB) * Antigua and Barbuda * Argentina * Armenia * Aruba (NL) * Australia * Austria * Azerbaijan * Bahamas * Bahrain * Bangladesh * Barbados * Belarus * Belgium * Belize * Benin * Bermuda (GB) * Bhutan * Bolivia * Bonaire (NL)  * Bosnia and Herzegovina * Botswana * Bouvet Island (NO) * Brazil * British Indian Ocean Territory (GB) * British Virgin Islands (GB) * Brunei * Bulgaria * Burkina Faso * Burundi * Cambodia * Cameroon * Canada * Cape Verde * Cayman Islands (GB) * Central African Republic * Chad * Chile * China * Christmas Island (AU) * Cocos Islands (AU) * Colombia * Comoros * Congo * Democratic Republic of the Congo * Cook Islands (NZ) * Coral Sea Islands Territory (AU) * Costa Rica * Croatia * Cuba * Curaçao (NL)  * Cyprus * Czech Republic * Denmark * Djibouti * Dominica * Dominican Republic * East Timor * Ecuador * Egypt * El Salvador * Equatorial Guinea * Eritrea * Estonia * Ethiopia * Falkland Islands (GB) * Faroe Islands (DK) * Fiji Islands * Finland * France * French Guiana (FR) * French Polynesia (FR) * French Southern Lands (FR) * Gabon * Gambia * Georgia * Germany * Ghana * Gibraltar (GB) * Greece * Greenland (DK) * Grenada * Guadeloupe (FR) * Guam (US) * Guatemala * Guernsey (GB) * Guinea * Guinea-Bissau * Guyana * Haiti * Heard and McDonald Islands (AU) * Honduras * Hong Kong (CN) * Hungary * Iceland * India * Indonesia * Iran * Iraq * Ireland * Isle of Man (GB) * Israel * Italy * Ivory Coast * Jamaica * Jan Mayen (NO) * Japan * Jersey (GB) * Jordan * Kazakhstan * Kenya * Kiribati * Kosovo * Kuwait * Kyrgyzstan * Laos * Latvia * Lebanon * Lesotho * Liberia * Libya * Liechtenstein * Lithuania * Luxembourg * Macau (CN) * Macedonia * Madagascar * Malawi * Malaysia * Maldives * Mali * Malta * Marshall Islands * Martinique (FR) * Mauritania * Mauritius * Mayotte (FR) * Mexico * Micronesia * Moldova * Monaco * Mongolia * Montenegro * Montserrat (GB) * Morocco * Mozambique * Myanmar * Namibia * Nauru * Navassa (US) * Nepal * Netherlands * New Caledonia (FR) * New Zealand * Nicaragua * Niger * Nigeria * Niue (NZ) * Norfolk Island (AU) * North Korea * Northern Cyprus * Northern Mariana Islands (US) * Norway * Oman * Pakistan * Palau * Palestinian Authority * Panama * Papua New Guinea * Paraguay * Peru * Philippines * Pitcairn Island (GB) * Poland * Portugal * Puerto Rico (US) * Qatar * Reunion (FR) * Romania * Russia * Rwanda * Saba (NL)  * Saint Barthelemy (FR) * Saint Helena (GB) * Saint Kitts and Nevis * Saint Lucia * Saint Martin (FR) * Saint Pierre and Miquelon (FR) * Saint Vincent and the Grenadines * Samoa * San Marino * Sao Tome and Principe * Saudi Arabia * Senegal * Serbia * Seychelles * Sierra Leone * Singapore * Sint Eustatius (NL)  * Sint Maarten (NL)  * Slovakia * Slovenia * Solomon Islands * Somalia * South Africa * South Georgia (GB) * South Korea * South Sudan * Spain * Sri Lanka * Sudan * Suriname * Svalbard (NO) * Swaziland * Sweden * Switzerland * Syria * Taiwan * Tajikistan * Tanzania * Thailand * Togo * Tokelau (NZ) * Tonga * Trinidad and Tobago * Tunisia * Turkey * Turkmenistan * Turks and Caicos Islands (GB) * Tuvalu * U.S. Minor Pacific Islands (US) * U.S. Virgin Islands (US) * Uganda * Ukraine * United Arab Emirates * United Kingdom * United States * Uruguay * Uzbekistan * Vanuatu * Vatican City * Venezuela * Vietnam * Wallis and Futuna (FR) * Yemen * Zambia * Zimbabwe

A ring, circular band of gold, silver, or some other precious or decorative material that is worn on the finger. Rings are worn not only on the fingers but also on toes, the ears (see earring), and through the nose. Besides serving to adorn the body, rings have functioned as symbols of authority, fidelity, or social status.

Basically, a ring consists of three parts: the circle, or hoop; the shoulders; and the bezel. The circle can have a circular, semicircular, or square cross-section, or it can be shaped as a flat band. The shoulders consist of a thickening or enlargement of the circle wide enough to support the bezel. The bezel is the top part of a ring; it may simply be a flat table, or it may be designed to hold a gem or some other ornament.


The earliest existing rings are those found in the tombs of ancient Egypt. The Egyptians primarily used signet, or seal, rings, in which a seal engraved on the bezel can be used to authenticate documents by the wearer. Egyptian seal rings typically had the name and titles of the owner deeply sunk in hieroglyphic characters on an oblong gold bezel. The ancient Greeks were more prone to use rings simply for decoration, and in the Hellenistic period the bezel began to be used to hold individual cabochon stones, such as carnelians and garnets, or vitreous pastes. In Rome rings were an important symbol of social status. In the early centuries of the Roman Republic, most rings were of iron, and the wearing of gold rings was restricted to certain classes, such as patricians who had held high office. But by the 3rd century BC the privilege of wearing rings had been extended to the class of knights, or equites, and by the 3rd century AD, during the Roman Empire, practically any person except a slave was allowed to wear a gold ring. The Romans are also thought to have originated the custom of betrothal rings, or engagement rings, symbolizing a promise of marriage to a member of the opposite sex.

Throughout the European Middle Ages the signet ring was of great importance in religious, legal, and commercial transactions. The Roman Catholic church conferred episcopal rings upon newly appointed bishops, and so-called papal rings were given by popes to cardinals. An enormous papal ring called the Fisherman’s Ring—made of gilded bronze and bearing the image of St. Peter fishing—is traditionally used by the pope as a seal for pontifical documents. Besides these types, there were memorial rings, upon which were engraved the name, date of death, or even the effigy of a deceased person; posy rings, upon which were engraved an inscription or a few lines of verse; occult rings, which functioned as talismans or amulets and were supposed to have magical powers; and poison rings, whose hollow bezels contained a poison for purposes of suicide or homicide. Rings with bezels that opened may also have held sentimental keepsakes in miniature.


By the 19th century, the traditional distinctions between ring types had mostly broken down, giving way to rings of all kinds inspired by past styles. Fine-quality modern rings, many of which are machine-made, usually consist of gold or silver and feature standard-sized diamonds or other precious stones. They are worn either for purposes of simple adornment or as symbols of betrothal and marital fidelity.

A sphere (from Ancient Greek σφαῖρα (sphaîra) 'globe, ball')[1] is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance r from a given point in three-dimensional space.[2] That given point is the centre of the sphere, and r is the sphere's radius. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians.

The sphere is a fundamental object in many fields of mathematics. Spheres and nearly-spherical shapes also appear in nature and industry. Bubbles such as soap bubbles take a spherical shape in equilibrium. The Earth is often approximated as a sphere in geography, and the celestial sphere is an important concept in astronomy. Manufactured items including pressure vessels and most curved mirrors and lenses are based on spheres. Spheres roll smoothly in any direction, so most balls used in sports and toys are spherical, as are ball bearings.

Basic terminology

Two orthogonal radii of a sphere
As mentioned earlier r is the sphere's radius; any line from the center to a point on the sphere is also called a radius.[3]

If a radius is extended through the center to the opposite side of the sphere, it creates a diameter. Like the radius, the length of a diameter is also called the diameter, and denoted d. Diameters are the longest line segments that can be drawn between two points on the sphere: their length is twice the radius, d=2r. Two points on the sphere connected by a diameter are antipodal points of each other.[3]

A unit sphere is a sphere with unit radius (r=1). For convenience, spheres are often taken to have their center at the origin of the coordinate system, and spheres in this article have their center at the origin unless a center is mentioned.

A great circle on the sphere has the same center and radius as the sphere, and divides it into two equal hemispheres.

Although the Earth is not perfectly spherical, terms borrowed from geography are convenient to apply to the sphere. If a particular point on a sphere is (arbitrarily) designated as its north pole, its antipodal point is called the south pole. The great circle equidistant to each is then the equator. Great circles through the poles are called lines of longitude or meridians. A line connecting the two poles may be called the axis of rotation. Small circles on the sphere that are parallel to the equator are lines of latitude. In geometry unrelated to astronomical bodies, geocentric terminology should be used only for illustration and noted as such, unless there is no chance of misunderstanding.[3]

Mathematicians consider a sphere to be a two-dimensional closed surface embedded in three-dimensional Euclidean space. They draw a distinction a sphere and a ball, which is a three-dimensional manifold with boundary that includes the volume contained by the sphere. An open ball excludes the sphere itself, while a closed ball includes the sphere: a closed ball is the union of the open ball and the sphere, and a sphere is the boundary of a (closed or open) ball. The distinction between ball and sphere has not always been maintained and especially older mathematical references talk about a sphere as a solid. The distinction between "circle" and "disk" in the plane is similar.

Equations
In analytic geometry, a sphere with center (x0, y0, z0) and radius r is the locus of all points (x, y, z) such that

{\displaystyle (x-x_{0})^{2}+(y-y_{0})^{2}+(z-z_{0})^{2}=r^{2}.}{\displaystyle (x-x_{0})^{2}+(y-y_{0})^{2}+(z-z_{0})^{2}=r^{2}.}
Since it can be expressed as a quadratic polynomial, a sphere is a quadric surface, a type of algebraic surface.[3]

Let a, b, c, d, e be real numbers with a ≠ 0 and put

{\displaystyle x_{0}={\frac {-b}{a}},\quad y_{0}={\frac {-c}{a}},\quad z_{0}={\frac {-d}{a}},\quad \rho ={\frac {b^{2}+c^{2}+d^{2}-ae}{a^{2}}}.}{\displaystyle x_{0}={\frac {-b}{a}},\quad y_{0}={\frac {-c}{a}},\quad z_{0}={\frac {-d}{a}},\quad \rho ={\frac {b^{2}+c^{2}+d^{2}-ae}{a^{2}}}.}
Then the equation

{\displaystyle f(x,y,z)=a(x^{2}+y^{2}+z^{2})+2(bx+cy+dz)+e=0}{\displaystyle f(x,y,z)=a(x^{2}+y^{2}+z^{2})+2(bx+cy+dz)+e=0}
has no real points as solutions if {\displaystyle \rho <0}\rho < 0 and is called the equation of an imaginary sphere. If {\displaystyle \rho =0}\rho =0, the only solution of {\displaystyle f(x,y,z)=0}{\displaystyle f(x,y,z)=0} is the point {\displaystyle P_{0}=(x_{0},y_{0},z_{0})}P_{0}=(x_{0},y_{0},z_{0}) and the equation is said to be the equation of a point sphere. Finally, in the case {\displaystyle \rho >0}\rho >0, {\displaystyle f(x,y,z)=0}{\displaystyle f(x,y,z)=0} is an equation of a sphere whose center is {\displaystyle P_{0}}P_{0} and whose radius is {\displaystyle {\sqrt {\rho }}}{\displaystyle {\sqrt {\rho }}}.[2]

If a in the above equation is zero then f(x, y, z) = 0 is the equation of a plane. Thus, a plane may be thought of as a sphere of infinite radius whose center is a point at infinity.[4]

Parametric
A parametric equation for the sphere with radius {\displaystyle r>0}r > 0 and center {\displaystyle (x_{0},y_{0},z_{0})}(x_{0},y_{0},z_{0}) can be parameterized using trigonometric functions.

{\displaystyle {\begin{aligned}x&=x_{0}+r\sin \theta \;\cos \varphi \\y&=y_{0}+r\sin \theta \;\sin \varphi \\z&=z_{0}+r\cos \theta \,\end{aligned}}}{\displaystyle {\begin{aligned}x&=x_{0}+r\sin \theta \;\cos \varphi \\y&=y_{0}+r\sin \theta \;\sin \varphi \\z&=z_{0}+r\cos \theta \,\end{aligned}}}[5]
The symbols used here are the same as those used in spherical coordinates. r is constant, while θ varies from 0 to π and {\displaystyle \varphi }\varphi  varies from 0 to 2π.

Enclosed volume

Sphere and circumscribed cylinder
In three dimensions, the volume inside a sphere (that is, the volume of a ball, but classically referred to as the volume of a sphere) is

{\displaystyle V={\frac {4}{3}}\pi r^{3}={\frac {\pi }{6}}\ d^{3}\approx 0.5236\cdot d^{3}}{\displaystyle V={\frac {4}{3}}\pi r^{3}={\frac {\pi }{6}}\ d^{3}\approx 0.5236\cdot d^{3}}
where r is the radius and d is the diameter of the sphere. Archimedes first derived this formula by showing that the volume inside a sphere is twice the volume between the sphere and the circumscribed cylinder of that sphere (having the height and diameter equal to the diameter of the sphere).[6] This may be proved by inscribing a cone upside down into semi-sphere, noting that the area of a cross section of the cone plus the area of a cross section of the sphere is the same as the area of the cross section of the circumscribing cylinder, and applying Cavalieri's principle.[7] This formula can also be derived using integral calculus, i.e. disk integration to sum the volumes of an infinite number of circular disks of infinitesimally small thickness stacked side by side and centered along the x-axis from x = −r to x = r, assuming the sphere of radius r is centered at the origin.

Proof of sphere volume, using calculus
For most practical purposes, the volume inside a sphere inscribed in a cube can be approximated as 52.4% of the volume of the cube, since V = 
π
/
6
 d3, where d is the diameter of the sphere and also the length of a side of the cube and 
π
/
6
 ≈ 0.5236. For example, a sphere with diameter 1 m has 52.4% the volume of a cube with edge length 1 m, or about 0.524 m3.

Surface area
The surface area of a sphere of radius r is:

{\displaystyle A=4\pi r^{2}.}A=4\pi r^{2}.
Archimedes first derived this formula[9] from the fact that the projection to the lateral surface of a circumscribed cylinder is area-preserving.[10] Another approach to obtaining the formula comes from the fact that it equals the derivative of the formula for the volume with respect to r because the total volume inside a sphere of radius r can be thought of as the summation of the surface area of an infinite number of spherical shells of infinitesimal thickness concentrically stacked inside one another from radius 0 to radius r. At infinitesimal thickness the discrepancy between the inner and outer surface area of any given shell is infinitesimal, and the elemental volume at radius r is simply the product of the surface area at radius r and the infinitesimal thickness.

Proof of surface area, using calculus
The sphere has the smallest surface area of all surfaces that enclose a given volume, and it encloses the largest volume among all closed surfaces with a given surface area.[11] The sphere therefore appears in nature: for example, bubbles and small water drops are roughly spherical because the surface tension locally minimizes surface area.

The surface area relative to the mass of a ball is called the specific surface area and can be expressed from the above stated equations as

{\displaystyle \mathrm {SSA} ={\frac {A}{V\rho }}={\frac {3}{r\rho }},}{\displaystyle \mathrm {SSA} ={\frac {A}{V\rho }}={\frac {3}{r\rho }},}
where ρ is the density (the ratio of mass to volume).

Geometric properties
A sphere can be constructed as the surface formed by rotating a circle about any of its diameters; this is essentially the traditional definition of a sphere as given in Euclid's Elements. Since a circle is a special type of ellipse, a sphere is a special type of ellipsoid of revolution. Replacing the circle with an ellipse rotated about its major axis, the shape becomes a prolate spheroid; rotated about the minor axis, an oblate spheroid.[12]

A sphere is uniquely determined by four points that are not coplanar. More generally, a sphere is uniquely determined by four conditions such as passing through a point, being tangent to a plane, etc.[13] This property is analogous to the property that three non-collinear points determine a unique circle in a plane.

Consequently, a sphere is uniquely determined by (that is, passes through) a circle and a point not in the plane of that circle.

By examining the common solutions of the equations of two spheres, it can be seen that two spheres intersect in a circle and the plane containing that circle is called the radical plane of the intersecting spheres.[14] Although the radical plane is a real plane, the circle may be imaginary (the spheres have no real point in common) or consist of a single point (the spheres are tangent at that point).[15]

The angle between two spheres at a real point of intersection is the dihedral angle determined by the tangent planes to the spheres at that point. Two spheres intersect at the same angle at all points of their circle of intersection.[16] They intersect at right angles (are orthogonal) if and only if the square of the distance between their centers is equal to the sum of the squares of their radii.[4]

Pencil of spheres
Main article: Pencil (mathematics) § Pencil of spheres
If f(x, y, z) = 0 and g(x, y, z) = 0 are the equations of two distinct spheres then

{\displaystyle sf(x,y,z)+tg(x,y,z)=0}{\displaystyle sf(x,y,z)+tg(x,y,z)=0}
is also the equation of a sphere for arbitrary values of the parameters s and t. The set of all spheres satisfying this equation is called a pencil of spheres determined by the original two spheres. In this definition a sphere is allowed to be a plane (infinite radius, center at infinity) and if both the original spheres are planes then all the spheres of the pencil are planes, otherwise there is only one plane (the radical plane) in the pencil.[4]

Spherical geometry

Great circle on a sphere
Main article: Spherical geometry
The basic elements of Euclidean plane geometry are points and lines. On the sphere, points are defined in the usual sense. The analogue of the "line" is the geodesic, which is a great circle; the defining characteristic of a great circle is that the plane containing all its points also passes through the center of the sphere. Measuring by arc length shows that the shortest path between two points lying on the sphere is the shorter segment of the great circle that includes the points.

Many theorems from classical geometry hold true for spherical geometry as well, but not all do because the sphere fails to satisfy some of classical geometry's postulates, including the parallel postulate. In spherical trigonometry, angles are defined between great circles. Spherical trigonometry differs from ordinary trigonometry in many respects. For example, the sum of the interior angles of a spherical triangle always exceeds 180 degrees. Also, any two similar spherical triangles are congruent.

Any pair of points on a sphere that lie on a straight line through the sphere's center (i.e. the diameter) are called antipodal points—on the sphere, the distance between them is exactly half the length of the circumference.[note 2] Any other (i.e. not antipodal) pair of distinct points on a sphere

lie on a unique great circle,
segment it into one minor (i.e. shorter) and one major (i.e. longer) arc, and
have the minor arc's length be the shortest distance between them on the sphere.[note 3]
Spherical geometry is a form of elliptic geometry, which together with hyperbolic geometry makes up non-Euclidean geometry.

Differential geometry
The sphere is a smooth surface with constant Gaussian curvature at each point equal to 1/r2.[9] As per Gauss's Theorema Egregium, this curvature is independent of the sphere's embedding in 3-dimensional space. Also following from Gauss, a sphere cannot be mapped to a plane while maintaining both areas and angles. Therefore, any map projection introduces some form of distortion.

A sphere of radius r has area element {\displaystyle dA=r^{2}\sin \theta \,d\theta \,d\varphi }{\displaystyle dA=r^{2}\sin \theta \,d\theta \,d\varphi }. This can be found from the volume element in spherical coordinates with r held constant.[9]

A sphere of any radius centered at zero is an integral surface of the following differential form:

{\displaystyle x\,dx+y\,dy+z\,dz=0.}{\displaystyle x\,dx+y\,dy+z\,dz=0.}
This equation reflects that the position vector and tangent plane at a point are always orthogonal to each other. Furthermore, the outward-facing normal vector is equal to the position vector scaled by 1/r.

In Riemannian geometry, the filling area conjecture states that the hemisphere is the optimal (least area) isometric filling of the Riemannian circle.

Topology
In topology, an n-sphere is defined as a space homeomorphic to the boundary of an (n + 1)-ball; thus, it is homeomorphic to the Euclidean n-sphere, but perhaps lacking its metric.

A 0-sphere is a pair of points with the discrete topology.
A 1-sphere is a circle (up to homeomorphism); thus, for example, (the image of) any knot is a 1-sphere.
A 2-sphere is an ordinary sphere (up to homeomorphism); thus, for example, any spheroid is a 2-sphere.
The n-sphere is denoted Sn. It is an example of a compact topological manifold without boundary. A sphere need not be smooth; if it is smooth, it need not be diffeomorphic to the Euclidean sphere (an exotic sphere).

The sphere is the inverse image of a one-point set under the continuous function ||x||, so it is closed; Sn is also bounded, so it is compact by the Heine–Borel theorem.

Remarkably, it is possible to turn an ordinary sphere inside out in a three-dimensional space with possible self-intersections but without creating any creases, in a process called sphere eversion.

The antipodal quotient of the sphere is the surface called the real projective plane, which can also be thought of as the Northern Hemisphere with antipodal points of the equator identified.

Curves on a sphere 

Plane section of a sphere: 1 circle

Coaxial intersection of a sphere and a cylinder: 2 circles
Circles
Main article: Circle of a sphere
Circles on the sphere are, like circles in the plane, made up of all points a certain distance from a fixed point on the sphere. The intersection of a sphere and a plane is a circle, a point, or empty.[17] Great circles are the intersection of the sphere with a plane passing through the center of a sphere: others are called small circles.

More complicated surfaces may intersect a sphere in circles, too: the intersection of a sphere with a surface of revolution whose axis contains the center of the sphere (are coaxial) consists of circles and/or points if not empty. For example, the diagram to the right shows the intersection of a sphere and a cylinder, which consists of two circles. If the cylinder radius were that of the sphere, the intersection would be a single circle. If the cylinder radius were larger than that of the sphere, the intersection would be empty.

Loxodrome

Loxodrome
Main article: Rhumb line
In navigation, a rhumb line or loxodrome is an arc crossing all meridians of longitude at the same angle. Loxodromes are the same as straight lines in the Mercator projection. A rhumb line is not a spherical spiral. Except for some simple cases, the formula of a rhumb line is complicated.

Clelia curves
Main article: Clélie

spherical spiral with {\displaystyle c=8}{\displaystyle c=8}
A Clelia curve is a curve on a sphere for which the longitude {\displaystyle \varphi }\varphi  and the colatitude {\displaystyle \theta }\theta  satisfy the equation

{\displaystyle \varphi =c\;\theta ,\quad c>0}{\displaystyle \varphi =c\;\theta ,\quad c>0}.
Special cases are: Viviani's curve ({\displaystyle c=1}{\displaystyle c=1}) and spherical spirals ({\displaystyle c>2}c>2) such as Seiffert's spiral. Clelia curves approximate the path of satellites in polar orbit.

Spherical conics
Main article: Spherical conic
The analog of a conic section on the sphere is a spherical conic, a quartic curve which can be defined in several equivalent ways, including:

as the intersection of a sphere with a quadratic cone whose vertex is the sphere center;
as the intersection of a sphere with an elliptic or hyperbolic cylinder whose axis passes through the sphere center;
as the locus of points whose sum or difference of great-circle distances from a pair of foci is a constant.
Many theorems relating to planar conic sections also extend to spherical conics.

Intersection of a sphere with a more general surface

General intersection sphere-cylinder
If a sphere is intersected by another surface, there may be more complicated spherical curves.

Example
sphere – cylinder
Main article: Sphere–cylinder intersection
The intersection of the sphere with equation {\displaystyle \;x^{2}+y^{2}+z^{2}=r^{2}\;}{\displaystyle \;x^{2}+y^{2}+z^{2}=r^{2}\;} and the cylinder with equation {\displaystyle \;(y-y_{0})^{2}+z^{2}=a^{2},\;y_{0}\neq 0\;}{\displaystyle \;(y-y_{0})^{2}+z^{2}=a^{2},\;y_{0}\neq 0\;} is not just one or two circles. It is the solution of the non-linear system of equations

{\displaystyle x^{2}+y^{2}+z^{2}-r^{2}=0}{\displaystyle x^{2}+y^{2}+z^{2}-r^{2}=0}
{\displaystyle (y-y_{0})^{2}+z^{2}-a^{2}=0\ .}{\displaystyle (y-y_{0})^{2}+z^{2}-a^{2}=0\ .}
(see implicit curve and the diagram)

Eleven properties of the sphere

A normal vector to a sphere, a normal plane and its normal section. The curvature of the curve of intersection is the sectional curvature. For the sphere each normal section through a given point will be a circle of the same radius: the radius of the sphere. This means that every point on the sphere will be an umbilical point.
In their book Geometry and the Imagination,[18] David Hilbert and Stephan Cohn-Vossen describe eleven properties of the sphere and discuss whether these properties uniquely determine the sphere. Several properties hold for the plane, which can be thought of as a sphere with infinite radius. These properties are:

The points on the sphere are all the same distance from a fixed point. Also, the ratio of the distance of its points from two fixed points is constant.
The first part is the usual definition of the sphere and determines it uniquely. The second part can be easily deduced and follows a similar result of Apollonius of Perga for the circle. This second part also holds for the plane.
The contours and plane sections of the sphere are circles.
This property defines the sphere uniquely.
The sphere has constant width and constant girth.
The width of a surface is the distance between pairs of parallel tangent planes. Numerous other closed convex surfaces have constant width, for example the Meissner body. The girth of a surface is the circumference of the boundary of its orthogonal projection on to a plane. Each of these properties implies the other.
All points of a sphere are umbilics.
At any point on a surface a normal direction is at right angles to the surface because the sphere these are the lines radiating out from the center of the sphere. The intersection of a plane that contains the normal with the surface will form a curve that is called a normal section, and the curvature of this curve is the normal curvature. For most points on most surfaces, different sections will have different curvatures; the maximum and minimum values of these are called the principal curvatures. Any closed surface will have at least four points called umbilical points. At an umbilic all the sectional curvatures are equal; in particular the principal curvatures are equal. Umbilical points can be thought of as the points where the surface is closely approximated by a sphere.
For the sphere the curvatures of all normal sections are equal, so every point is an umbilic. The sphere and plane are the only surfaces with this property.
The sphere does not have a surface of centers.
For a given normal section exists a circle of curvature that equals the sectional curvature, is tangent to the surface, and the center lines of which lie along on the normal line. For example, the two centers corresponding to the maximum and minimum sectional curvatures are called the focal points, and the set of all such centers forms the focal surface.
For most surfaces the focal surface forms two sheets that are each a surface and meet at umbilical points. Several cases are special:
* For channel surfaces one sheet forms a curve and the other sheet is a surface
* For cones, cylinders, tori and cyclides both sheets form curves.
* For the sphere the center of every osculating circle is at the center of the sphere and the focal surface forms a single point. This property is unique to the sphere.
All geodesics of the sphere are closed curves.
Geodesics are curves on a surface that give the shortest distance between two points. They are a generalization of the concept of a straight line in the plane. For the sphere the geodesics are great circles. Many other surfaces share this property.
Of all the solids having a given volume, the sphere is the one with the smallest surface area; of all solids having a given surface area, the sphere is the one having the greatest volume.
It follows from isoperimetric inequality. These properties define the sphere uniquely and can be seen in soap bubbles: a soap bubble will enclose a fixed volume, and surface tension minimizes its surface area for that volume. A freely floating soap bubble therefore approximates a sphere (though such external forces as gravity will slightly distort the bubble's shape). It can also be seen in planets and stars where gravity minimizes surface area for large celestial bodies.
The sphere has the smallest total mean curvature among all convex solids with a given surface area.
The mean curvature is the average of the two principal curvatures, which is constant because the two principal curvatures are constant at all points of the sphere.
The sphere has constant mean curvature.
The sphere is the only imbedded surface that lacks boundary or singularities with constant positive mean curvature. Other such immersed surfaces as minimal surfaces have constant mean curvature.
The sphere has constant positive Gaussian curvature.
Gaussian curvature is the product of the two principal curvatures. It is an intrinsic property that can be determined by measuring length and angles and is independent of how the surface is embedded in space. Hence, bending a surface will not alter the Gaussian curvature, and other surfaces with constant positive Gaussian curvature can be obtained by cutting a small slit in the sphere and bending it. All these other surfaces would have boundaries, and the sphere is the only surface that lacks a boundary with constant, positive Gaussian curvature. The pseudosphere is an example of a surface with constant negative Gaussian curvature.
The sphere is transformed into itself by a three-parameter family of rigid motions.
Rotating around any axis a unit sphere at the origin will map the sphere onto itself. Any rotation about a line through the origin can be expressed as a combination of rotations around the three-coordinate axis (see Euler angles). Therefore, a three-parameter family of rotations exists such that each rotation transforms the sphere onto itself; this family is the rotation group SO(3). The plane is the only other surface with a three-parameter family of transformations (translations along the x- and y-axes and rotations around the origin). Circular cylinders are the only surfaces with two-parameter families of rigid motions and the surfaces of revolution and helicoids are the only surfaces with a one-parameter family.
Generalizations
Ellipsoids
An ellipsoid is a sphere that has been stretched or compressed in one or more directions. More exactly, it is the image of a sphere under an affine transformation. An ellipsoid bears the same relationship to the sphere that an ellipse does to a circle.

Dimensionality
Main article: n-sphere
Spheres can be generalized to spaces of any number of dimensions. For any natural number n, an "n-sphere," often written as Sn, is the set of points in (n + 1)-dimensional Euclidean space that are at a fixed distance r from a central point of that space, where r is, as before, a positive real number. In particular:

S0: a 0-sphere consists of two discrete points, −r and r
S1: a 1-sphere is a circle of radius r
S2: a 2-sphere is an ordinary sphere
S3: a 3-sphere is a sphere in 4-dimensional Euclidean space.
Spheres for n > 2 are sometimes called hyperspheres.

The n-sphere of unit radius centered at the origin is denoted Sn and is often referred to as "the" n-sphere. The ordinary sphere is a 2-sphere, because it is a 2-dimensional surface which is embedded in 3-dimensional space.

Metric spaces
Main article: Metric space
More generally, in a metric space (E,d), the sphere of center x and radius r > 0 is the set of points y such that d(x,y) = r.

If the center is a distinguished point that is considered to be the origin of E, as in a normed space, it is not mentioned in the definition and notation. The same applies for the radius if it is taken to equal one, as in the case of a unit sphere.

Unlike a ball, even a large sphere may be an empty set. For example, in Zn with Euclidean metric, a sphere of radius r is nonempty only if r2 can be written as sum of n squares of integers.

An octahedron is a sphere in taxicab geometry, and a cube is a sphere in geometry using the Chebyshev distance.

History
The geometry of the sphere was studied by the Greeks. Euclid's Elements defines the sphere in book XI, discusses various properties of the sphere in book XII, and shows how to inscribe the five regular polyhedra within a sphere in book XIII. Euclid does not include the area and volume of a sphere, only a theorem that the volume of a sphere varies as the third power of its diameter, probably due to Eudoxus of Cnidus. The volume and area formulas were first determined in Archimedes's On the Sphere and Cylinder by the method of exhaustion. Zenodorus was the first to state that, for a given surface area, the sphere is the solid of maximum volume.[3]

Archimedes wrote about the problem of dividing a sphere into segments whose volumes are in a given ratio, but did not solve it. A solution by means of the parabola and hyperbola was given by Dionysodorus of Amisus (c. 1st century B.C.), and a similar problem — to construct a segment equal in volume to a given segment, and in surface to another segment — was solved later by al-Quhi.[3]

Gallery

An image of one of the most accurate human-made spheres, as it refracts the image of Einstein in the background. This sphere was a fused quartz gyroscope for the Gravity Probe B experiment, and differs in shape from a perfect sphere by no more than 40 atoms (less than 10 nm) of thickness. It was announced on 1 July 2008 that Australian scientists had created even more nearly perfect spheres, accurate to 0.3 nm, as part of an international hunt to find a new global standard kilogram.[19]

 

Deck of playing cards illustrating engineering instruments, England, 1702. King of spades: Spheres

Regions
See also: Ball (mathematics) § Regions
Hemisphere
Spherical cap
Spherical lune
Spherical polygon
Spherical sector
Spherical segment
Spherical wedge
Spherical zone
See also
3-sphere
Affine sphere
Alexander horned sphere
Celestial spheres
Curvature
Directional statistics
Dyson sphere
Gauss map
Hand with Reflecting Sphere, M.C. Escher self-portrait drawing illustrating reflection and the optical properties of a mirror sphere
Hoberman sphere
Homology sphere
Homotopy groups of spheres
Homotopy sphere
Lenart Sphere
Napkin ring problem
Orb (optics)
Pseudosphere
Riemann sphere
Solid angle
Sphere packing
Spherical coordinates
Spherical cow
Spherical helix, tangent indicatrix of a curve of constant precession
Spherical polyhedron
Sphericity
Tennis ball theorem
Zoll sphere
Notes and references
Notes
 r is being considered as a variable in this computation.
 It does not matter which direction is chosen, the distance is the sphere's radius × π.
 The distance between two non-distinct points (i.e. a point and itself) on the sphere is zero.
References
 σφαῖρα, Henry George Liddell, Robert Scott, A Greek-English Lexicon, on Perseus.
 Albert 2016, p. 54.
 Chisholm, Hugh, ed. (1911). "Sphere" . Encyclopædia Britannica. Vol. 25 (11th ed.). Cambridge University Press. pp. 647–648.
 Woods 1961, p. 266.
 Kreyszig (1972, p. 342).
 Steinhaus 1969, p. 223.
 "The volume of a sphere - Math Central". mathcentral.uregina.ca. Retrieved 10 June 2019.
 E.J. Borowski; J.M. Borwein (1989). Collins Dictionary of Mathematics. pp. 141, 149. ISBN 978-0-00-434347-1.
 Weisstein, Eric W. "Sphere". MathWorld.
 Steinhaus 1969, p. 221.
 Osserman, Robert (1978). "The isoperimetric inequality". Bulletin of the American Mathematical Society. 84 (6): 1187. doi:10.1090/S0002-9904-1978-14553-4. Retrieved 14 December 2019.
 Albert 2016, p. 60.
 Albert 2016, p. 55.
 Albert 2016, p. 57.
 Woods 1961, p. 267.
 Albert 2016, p. 58.
 Weisstein, Eric W. "Spheric section". MathWorld.
 Hilbert, David; Cohn-Vossen, Stephan (1952). Geometry and the Imagination (2nd ed.). Chelsea. ISBN 978-0-8284-1087-8.
 New Scientist | Technology | Roundest objects in the world created.
Further reading
Wikisource has the text of the 1911 Encyclopædia Britannica article "Sphere".
Albert, Abraham Adrian (2016) [1949], Solid Analytic Geometry, Dover, ISBN 978-0-486-81026-3.
Dunham, William (1997). The Mathematical Universe: An Alphabetical Journey Through the Great Proofs, Problems and Personalities. Wiley. New York. pp. 28, 226. Bibcode:1994muaa.book.....D. ISBN 978-0-471-17661-9.
Kreyszig, Erwin (1972), Advanced Engineering Mathematics (3rd ed.), New York: Wiley, ISBN 978-0-471-50728-4.
Steinhaus, H. (1969), Mathematical Snapshots (Third American ed.), Oxford University Press.
Woods, Frederick S. (1961) [1922], Higher Geometry / An Introduction to Advanced Methods in Analytic Geometry, Dover.
John C. Polking (15 April 1999). "The Geometry of the Sphere". www.math.csi.cuny.edu. Retrieved 21 January 2022.
External links
Sphere
at Wikipedia's sister projects
Definitions from Wiktionary
Media from Commons
News from Wikinews
Quotations from Wikiquote
Texts from Wikisource
Textbooks from Wikibooks
Resources from Wikiversity
Mathematica/Uniform Spherical Distribution
Surface area of sphere proof
vte
Compact topological surfaces and their immersions in 3D
Without boundary
Orientable
Sphere (genus 0)Torus (genus 1)Number 8 (genus 2)Pretzel (genus 3) ...
Non-orientable
Real projective plane genus 1; Boy's surfaceRoman surfaceKlein bottle (genus 2)Dyck's surface (genus 3) ...
With boundary
Disk SemisphereRibbon AnnulusCylinderMöbius strip Cross-capSphere with three holes ...
Related
notions
Properties
ConnectednessCompactnessTriangulatedness or smoothnessOrientability
Characteristics
Number of boundary componentsGenusEuler characteristic
Operations
Connected sumMaking a holeGluing a handleGluing a cross-capImmersion

Uniqueness is a state or condition wherein someone or something is unlike anything else in comparison.[1] When used in relation to humans, it is often in relation to a person's personality, or some specific characteristics of it, signalling that it is unlike the personality traits that are prevalent in that individual's culture.[2] When the term uniqueness is used in relation to an object, it is often within the realm of product, with the term being a factor used to publicize or market the product in order to make it stand out from other products within the same category.[3]

The notion of American exceptionalism is premised on the uniqueness of the West, particularly its well-defined secularism