SQUADRON SIGNAL WELLINGTON IN ACTION WW2 RAF BOMBER VICKERS RCAF RAAF POLISH NZ

Image Hosting by Vendio
 
Image Hosting by Vendio
 
Image Hosting by Vendio
 

SQUADRON SIGNAL WELLINGTON IN ACTION WW2 RAF BOMBER VICKERS RCAF RAAF (POLISH) (NEW ZEALAND) (CZECH)

INTRODUCTION (BARNES WALLIS, GEODETIC STRUCTURE, RAF BOMBER COMMAND, BRISTOL PEGASUS XVII RADIAL ENGINE)

WELLINGTON Mk.I

WELLINGTON Mk.IA

WELLINGTON Mk.IB

WELLINGTON Mk.IC

WELLINGTON DWI (DIRECTIONAL WIRELESS INSTALLATION) MINE WARFARE

WELLINGTON GR.Mk.VIII TORPEDO BOMBER, GR.MkVIII ANTI-SUBMARINE, LEIGH LIGHT, NOSE DEVELOPMENTS, FUSELAGE ANTENNA, WING AERIALS

WELLINGTON Mk.II

WELLINGTON Mk.III (HERCULES RADIAL ENGINE)

WELLINGTON Mk.IV (PRATT & WHITNEY TWIN WASP RADIAL ENGINE)

WELLINGTON Mk.V AND Mk.VI

WELLINGTON Mk.X

WELLINGTON Mk.XI

WELLINGTON Mk.XII ANTI-SUBMARINE

WELLINGTON GR.Mk.XIII

WELLINGTON GR.Mk.XIV

WELLINGTON C Mk.XV TRANSPORT

WELLINGTON C Mk.XVI TRANSPORT

WELLINGTON T Mk.XVII TRAINER

WELLINGTON T Mk.XVIII TRAINER

WELLINGTON T Mk.XIX

WARWICK

PHONEY WAR DAYLIGHT RAIDS

THE BATTLE OF HELIGOLAND BIGHT

MEDITERRANEAN THEATRE

LORENZ HORIZONTAL RECEIVING AERIAL

FUSELAGE WINDOW CHANGES

I HAVE HUNDREDS OF ADDITIONAL LISTINGS USING THE SIMPLE “BUY-IT-NOW” FORMAT.  I SPECIALIZE IN AVIATION REFERENCE MAGAZINES AND BOOKS. I ALSO CARRY TITLES ON MILITARY HISTORY, ARMOR, TANKS, SHIPS, ELITE SPECIAL UNITS AND AMERICAN CIVIL WAR. THESE ARE EXCELLENT GIFTS & REFERENCES FOR PILOTS, MILITARY AIRCREW, VETERANS, MILITARY RE-ENACTORS, SCALE MODELERS & AIRCRAFT ENTHUSIASTS.  TITLES CURRENTLY LISTED INCLUDED: THE ELITE, TAKE OFF, WARPLANE, PROFILE PUBLICATIONS, AIRCRAFT ILLUSTRATED, AIRCRAFT ILLUSTRATED EXTRA, AIR COMBAT, AIR ENTHUSIAST, AMERICAN AIRMAN AND THE ILLUSTRATED ENCYCLOPEDIA OF AIRCRAFT.

 

HARD TO FIND GIFTS FOR SCALE MODELERS, PILOTS, AIRCREW & VETERANS

HERE'S AN INEXPENSIVE FATHER'S DAY GIFT, BIRTHDAY PRESENT OR CHRISTMAS PRESENT FOR THE VETERAN, REENACTOR, SCALE MODELER, MILITARIA ENTHUSIAST OR HISTORY CHANNEL LOVER IN YOUR FAMILY

 

MONEY BACK GUARANTEE!

YOU WILL LOVE MY CUSTOMER FRIENDLY RETURN POLICY.  I WANT YOU OR YOUR GIFT RECIPIENT TO BE HAPPY WITH YOUR PURCHASE.  I GUARANTEE THAT THE ITEM SHIPPED WILL BE AS DESCRIBED.  YOU MAY RETURN THE ITEM WITHIN 14 DAYS FOR ANY REASON.  JUST EMAIL ME AND RETURN POST THE PACKAGE ADEQUATELY PROTECTED AGAINST SHIPPING DAMAGE) AND I WILL RETURN YOUR ITEM PURCHASE PRICE IN FULL.

 

I WILL POST POSITIVE FEEDBACK FOR YOU AFTER THE TRANSACTION IS COMPLETE AND I AM REASONABLY SURE THAT YOU HAVE RECEIVED THE ITEM.  IF THERE IS ANY PROBLEM, PLEASE EMAIL ME TO WORK THINGS OUT BEFORE LEAVING FEEDBACK.  MY GOAL IS TO LEAVE EVERY CUSTOMER 100% SATISFIED WITH MY PRODUCTS AND SERVICE. 

--------------------------------------------------------------------------------------------------------

Additional Information from Internet Encyclopedia

The Vickers Wellington was a British twin-engine, long-range medium bomber. It was designed during the mid-1930s at Brooklands in Weybridge, Surrey, led by Vickers-Armstrongs' Chief Designer Rex Pierson; a key feature of the aircraft is its geodesic fuselage structure, principally designed by Barnes Wallis. Development had been started in response to Air Ministry Specification B.9/32; issued in the middle of 1932, this called for a twin-engine day bomber capable of delivering higher performance than any previous design. Other aircraft developed to the same specification include the Armstrong Whitworth Whitley and the Handley Page Hampden. During the development process, performance requirements such as for the tare weight changed substantially, as well as the powerplant for the type being swapped.

The Vickers Wellington was a twin-engine long-range medium bomber, initially powered by a pair of Bristol Pegasus radial engines, which drove a pair of de Havilland two-pitch propellers. Various different engines and propeller configurations were used on different variants of the aircraft, which included several models of both the Bristol Hercules and the iconic Rolls-Royce Merlin engines. Recognizable characteristics of the Wellington include the high aspect ratio of its tapered wing, the depth of its fuselage, and the use of a tall single vertical stabilizer on its tail unit, which reportedly aided in recognition of the type.

The Wellington typically had a crew of five. The bomb-aimer was located within the aircraft's nose. The Wellington could be fitted with dual flight controls, and specialized dual-control conversion sets were developed for the purpose of performing training upon the type.  The cockpit also contained provisions for heating and de-icing equipment, which was introduced on later models of the Wellington. The Wellington Mk I had a maximum offensive bomb load of 4,500 lb (2,000 kg), more than one-fifth of the overall aircraft's 21,000 lb (9,500 kg) all-up weight.  Additional munitions and an expanded bombing capacity were a recurring change made in many of the subsequent variants of the Wellington developed during the war, including the carrying of ever-larger bombs.

Defensive armaments comprised the forward and tail turret gun positions, along with a retractable revolving ventral turret. Due to the high cruising speeds of the Wellington, it had been realized that fully enclosed turrets, as opposed to semi-enclosed or exposed turrets, would be necessary; the turrets were also power-operated in order to traverse with the speed and maneuverability necessary to keep up with the new generations of opposing fighter aircraft.  Due to the specialized nature of increasingly advanced turrets, these were treated as ancillary equipment, being designed and supplied independently and replacing Vickers' own turrets developed for the aircraft. The turrets initially used a Nash & Thompson control unit, while each position was equipped with a pair of .303 in (7.7 mm) Browning machine guns. On many Wellington variants, the Vickers-built ventral turret of the Mk I was replaced by a Nash & Thompson-built counterpart as standard.

A key innovation of the Wellington was its geodesic construction, devised by aircraft designer and inventor Barnes Wallis. The fuselage was built from 1,650 elements, consisting of duralumin W-beams which formed into a metal framework. Wooden battens were screwed to the beams and were covered with Irish linen; the linen, treated with layers of dope, formed the outer skin of the aircraft. The construction proved to be compatible with significant adaptions and alterations including greater all-up weight, larger bombs, tropicalization, and the addition of long-range fuel tanks.

The metal lattice gave the structure considerable strength, with any single stringer able to support a portion of load from the opposite side of the aircraft. Heavily damaged or destroyed beams on one side could still leave the aircraft structure viable; as a result, Wellingtons with huge areas of framework missing were often able to return home when other types would not have survived, leading to stories of the aircraft's 'invulnerability'. The effect was enhanced by the fabric skin occasionally burning off leaving the naked frames exposed. A further advantage of the geodesic construction of the wings was its enabling of a unique method for housing the fuel, with each wing containing three fuel tanks within the unobstructed space provided between the front and rear spars outboard of the engines

The Wellington was widely used as a night bomber in the early years of the Second World War, performing as one of the principal bombers used by Bomber Command. During 1943, it started to be superseded as a bomber by the larger four-engined "heavies" such as the Avro Lancaster. The Wellington continued to serve throughout the war in other duties, particularly as an anti-submarine aircraft. It holds the distinction of being the only British bomber to be produced for the duration of the war and of being produced in a greater quantity than any other British-built bomber. The Wellington remained as first-line equipment when the war ended, although it had been increasing relegated to secondary roles.

In August 1936, an initial order for 180 Wellington Mk I aircraft, powered by a pair of 1,050 hp (780 kW) Bristol Pegasus radial engines, was received by Vickers; it had been placed so rapidly that the order occurred prior to the first meeting intended to decide the details of the production aircraft.[15] In October 1937, another order for a further 100 Wellington Mk Is, produced by the Gloster Aircraft Company, was issued; it was followed by an order for 100 Wellington Mk II aircraft, which were instead powered by a pair of Rolls-Royce Merlin X V12 engines. Yet another order was placed for 64 Wellingtons produced by Armstrong Whitworth Aircraft. With this flurry of order and production having been assured by the end of 1937, Vickers set about simplifying the manufacturing process of the aircraft and announced a target of building one Wellington per day.

Construction took longer to build due to the geodesic fuselage in comparison to other designs using monocoque approach, leading to criticism of the Wellington. In particular, it was difficult to cut holes in the fuselage for access or equipment fixtures; to aid manufacturing, the Leigh light was deployed through the mounting for the absent FN9 ventral turret. In the late 1930s, Vickers built Wellingtons at a rate of one per day at Weybridge and 50 a month at Broughton in North Wales. Many of the employees on the production lines were only semi-skilled and new to aircraft construction. Peak wartime production in 1942 saw monthly rates of 70 at Weybridge, 130 at Broughton and 102 at Blackpool. Shadow factories were set up to produce parts for the Wellington all over the British Isles.

In October 1943, as a propaganda and morale-boosting exercise, workers at Broughton gave up their weekend to build Wellington number LN514 rushed by the clock. The bomber was assembled in 23 hours 50 minutes, and took off after 24 hours 48 minutes, beating the record of 48 hours set by a factory in California. Each Wellington was usually built within 60 hours. It was filmed for the Ministry of Information for a newsreel Worker's Week-End, and was broadcast in both Britain and America. It was the first time in the world that a British aircraft manufacturer had attempted such a feat with a metal aircraft of this scale.

A total of 180 Wellington Mk I aircraft were built; 150 for the RAF and 30 for the Royal New Zealand Air Force (RNZAF) (which were transferred to the RAF on the outbreak of war and used by 75 Squadron). In October 1938, the Mk I entered service with 9 Squadron. The Wellington was initially outnumbered by the Handley Page Hampden (also ordered by the Ministry to B.9/32) and the Armstrong Whitworth Whitley (to B.34/3 for a 'night' bomber) but outlasted both rival aircraft in service. The Wellington went on to be built in 16 separate variants, in addition to two training conversions after the war. The number of Wellingtons built totalled 11,461 of all versions, a greater quantity produced than any other British bomber. On 13 October 1945, the last Wellington to be produced rolled out.

The Wellington Mk I was quickly superseded by several successive variants featuring various improvements. Improvements to the turrets and the strengthening of the undercarriage quickly resulted in the Wellington Mk IA. According to Andrews, the IA model bore more similarities to the later Wellington Mk II than to its Mk I predecessor. Due to armament difficulties encountered that left the Wellington with weaker than intended defenses, the Wellington Mk IB was proposed for trials, but appears to have been unbuilt. Further development of various aspects of the aircraft, such as the hydraulics and electrical systems, along with a revision of the ventral turret gun, led to the Wellington Mk IC.

In January 1938, design work on what would become the Wellington Mk II formally commenced. The principal change on this model was the adoption of the Merlin engine in place of the Pegasus XVIII; other modifications included hydraulic and oxygen system revisions along with the installation of cabin heating and an astrodome. On 3 March 1939, L4250, the prototype Mk II, performed its maiden flight; this had been delayed due to production delays of its Merlin X engines.  Stability and balance issues were encountered during flight tests of the prototype, resulting in further changes such as the enlargement of the tailplane. By late 1939, the Mk II was capable of delivering superior performance to the Mk IC, such as higher cruising and top speeds, increased all-up weight or alternatively greater range, and a raised ceiling.

On 3 September 1939, the eve of the outbreak of the Second World War, No. 3 Group of Bomber Command comprised eight squadrons (No. 9, No. 37, No. 37 No. 38, No. 99, No. 115 and No. 149 Squadrons), alongside two reserve squadrons (No. 214 and No. 215 squadrons), that were equipped with a mixture of Wellington Mk I and Mk IA aircraft.

On 4 September 1939, less than 24 hours after the commencement of hostility, a total of 14 Wellingtons of No. 9 and No. 149 Squadrons, alongside a number of Bristol Blenheim aircraft, performed the first RAF bombing raid of the war, targeting German shipping at Brunsbüttel. The bombing of the harbour itself had not been permitted by the Chamberlain War Cabinet for fear of injuring civilians. The effectiveness of the raid was diminished by a combination of poor weather and high amounts of anti-aircraft fire. During this opening raid, a pair of Wellingtons became the first aircraft to be lost on the Western Front.

On 3 December 1939, 24 Wellingtons of No. 38, No. 115 and No. 147 Squadrons attacked the German fleet moored at Heligoland. The bombing commenced from high altitude and, while results of the bombing itself proved negligible in terms of damage, the ability of a formation of Wellingtons to adequately penetrate strongly defended hostile airspace was validated. On 14 December 1939, 12 Wellingtons of No. 99 Squadron conducted a low-level raid upon German shipping at the Schillig Roads and Wilhelmshaven. Encountering enemy fire from warships, flak, and Luftwaffe aircraft, the Wellington formation lost five aircraft, along with another that crashed near its base, while only one enemy fighter was downed.

On 18 December 1939, 24 Wellingtons of No. 9, No. 37 and No. 149 Squadrons participated in the Battle of the Heligoland Bight against the German fleet and naval bases in both the Schillig Roads and Wilhelmshaven. The Wellingtons were unable to deploy their bombs as all vessels were in harbour, thus restrictions on endangering civilians prevented their engagement. Having been alerted by radar, Luftwaffe fighter aircraft intercepted the incoming bombers near to Heligoland and continuously attacked the formation much of the way home. In total, 12 of the bombers were destroyed and a further three were badly damaged, defensive fire from the turrets downed four aircraft.

The Wellington was also adopted by Coastal Command, in which it contributed to the Battle of the Atlantic. It was used to carry out anti-submarine duties; on 6 July 1942, a Wellington sank its first enemy vessel. Specialised DWI variants were developed fitted with a 48 ft (14.63 m) diameter metal hoop were used for exploding enemy mines by generating a powerful magnetic field as it passed over them. In 1944, Wellingtons of Coastal Command were deployed to Greece and performed various support duties during the British intervention in the Greek Civil War. A few Wellingtons were operated by the Hellenic Air Force.

While the Wellington was superseded in the European Theatre, it remained in operational service for much of the war in the Middle East and in 1942, Wellingtons based in India became the RAF's first long-range bomber operating in the Far East. It was particularly effective with the South African Air Force in North Africa. The Wellington also served in anti-submarine duties with 26 Squadron SAAF based in Takoradi, Gold Coast (now Ghana).

In late 1944, a radar-equipped Wellington XIV from 407 Sqn. RCAF was modified for use by the RAF's Fighter Interception Unit as what would now be described as an airborne early warning and control aircraft. It operated at an altitude of 4,000 ft (1,219 m) over the North Sea to control a de Havilland Mosquito and a Bristol Beaufighter fighter intercepting Heinkel He 111 bombers flying from Dutch airbases and carrying out airborne launches of the V-1 flying bomb. The FIU operators on the Wellington would search for the He-111 aircraft climbing to launch altitude, then direct the Beaufighter to the bomber, while the Mosquito would attempt to intercept the V-1 if launched.

The Wellington is listed in the appendix to the novel KG 200 as one flown by the German secret operations unit KG 200, which also tested, evaluated and sometimes clandestinely operated captured enemy aircraft during the Second World War.



Shipping & Handling Back to Top

 
 US Shipping

(FREE) USPS Media Mail®

 
 International Shipping

Please check eBay's Shipping & Payment tab
USPS First-Class Mail International (Worldwide)
USPS First-Class Mail International (Canada)



 
FREE scheduling, supersized images
and templates. Get Vendio Sales Manager.
Make your listings stand out with
FREE Vendio custom templates!

Simply Powerful eCommerce
 
FREE scheduling, supersized images
and templates. Get Vendio Sales Manager.


Over 100,000,000 served. Get FREE counters from Vendio today!