This medal is a part of my French medals offer 

 

Visit my page with the offers, please.

You will find many interesting items related to this subject. 

If you are interested in other medals, related to this subject, click here, please;

France, related to 

 

This medal has been minted in France to commemorate the eminent scientist, Alexander Graham BELL, 1847 - 1922. 

 

This is a medal of the French medalist, Andres BOURROUX.

It is signed. 

 

Alexander Graham Bell (March 3, 1847 – August 2, 1922) was an eminent scientist, inventor, engineer and innovator who is credited with inventing the first practical telephone.

 

av. Graham Bell; the signature; BORROUX

rv. The inscriptions and the symbolic motives

 

size – 68 mm, (2⅝“)

weight – 169.50 gr (5.98 oz)

metal – bronze, mint patina 

 

Bell's father, grandfather, and brother had all been associated with work on elocution and speech, and both his mother and wife were deaf, profoundly influencing Bell's life's work. His research on hearing and speech further led him to experiment with hearing devices which eventually culminated in Bell being awarded the first US patent for the telephone in 1876.[N 2] In retrospect, Bell considered his most famous invention an intrusion on his real work as a scientist and refused to have a telephone in his study. 

Many other inventions marked Bell's later life, including groundbreaking work in optical telecommunications, hydrofoils and aeronautics. In 1888, Bell became one of the founding members of the National Geographic Society. He has been described as one of the most influential figures in human history. 

Bell's father, grandfather, and brother had all been associated with work on elocution and speech, and both his mother and wife were deaf, profoundly influencing Bell's life's work. His research on hearing and speech further led him to experiment with hearing devices which eventually culminated in Bell being awarded the first US patent for the telephone in 1876.[N 2] In retrospect, Bell considered his most famous invention an intrusion on his real work as a scientist and refused to have a telephone in his study. 

Many other inventions marked Bell's later life, including groundbreaking work in optical telecommunications, hydrofoils and aeronautics. In 1888, Bell became one of the founding members of the National Geographic Society. He has been described as one of the most influential figures in human history.

 

Early years

Alexander Bell was born in Edinburgh, Scotland on March 3, 1847.[7] The family home was at 16 South Charlotte Street, and has a stone inscription, marking it as Alexander Graham Bell's birthplace. He had two brothers: Melville James Bell (1845–70) and Edward Charles Bell (1848–67). Both of his brothers died of tuberculosis.[8] His father was Professor Alexander Melville Bell, and his mother was Eliza Grace (née Symonds). Although he was born "Alexander", at age 10, he made a plea to his father to have a middle name like his two brothers. For his 11th birthday, his father acquiesced and allowed him to adopt the middle name "Graham", chosen out of admiration for Alexander Graham, a Canadian being treated by his father and boarder who had become a family friend.[10] To close relatives and friends he remained "Aleck" which his father continued to call him into later life.

 

Canada

In 1870, at age 23, Bell, his brother's widow, Caroline (Margaret Ottaway),[35] and his parents travelled on the SS Nestorian to Canada.[36] After landing at Quebec City, the Bells boarded a train to Montreal and later to Paris, Ontario, to stay with the Reverend Thomas Henderson, a family friend. After a brief stay with the Hendersons, the Bell family purchased a farm of 10.5 acres (42,000 m2) at Tutelo Heights (now called Tutela Heights), near Brantford, Ontario. The property consisted of an orchard, large farm house, stable, pigsty, hen-house and a carriage house, which bordered the Grand River. 

At the homestead, Bell set up his own workshop in the converted carriage house near to what he called his "dreaming place", a large hollow nestled in trees at the back of the property above the river. Despite his frail condition upon arriving in Canada, Bell found the climate and environs to his liking, and rapidly improved. He continued his interest in the study of the human voice and when he discovered the Six Nations Reserve across the river at Onondaga, he learned the Mohawk language and translated its unwritten vocabulary into Visible Speech symbols. For his work, Bell was awarded the title of Honorary Chief and participated in a ceremony where he donned a Mohawk headdress and danced traditional dances. 

After setting up his workshop, Bell continued experiments based on Helmholtz's work with electricity and sound.[38] He designed a piano, which, by means of electricity, could transmit its music at a distance. Once the family was settled in, both Bell and his father made plans to establish a teaching practice and in 1871, he accompanied his father to Montreal, where Melville was offered a position to teach his System of Visible Speech.

 

Continuing experimentation

In the following year, Bell became professor of Vocal Physiology and Elocution at the Boston University School of Oratory. During this period, he alternated between Boston and Brantford, spending summers in his Canadian home. At Boston University, Bell was "swept up" by the excitement engendered by the many scientists and inventors residing in the city. He continued his research in sound and endeavored to find a way to transmit musical notes and articulate speech, but although absorbed by his experiments, he found it difficult to devote enough time to experimentation. While days and evenings were occupied by his teaching and private classes, Bell began to stay awake late into the night, running experiment after experiment in rented facilities at his boarding house. Keeping up "night owl" hours, he worried that his work would be discovered and took great pains to lock up his notebooks and laboratory equipment. Bell had a specially made table where he could place his notes and equipment inside a locking cover.[51] Worse still, his health deteriorated as he suffered severe headaches. Returning to Boston in fall 1873, Bell made a fateful decision to concentrate on his experiments in sound. 

Deciding to give up his lucrative private Boston practice, Bell only retained two students, six-year old "Georgie" Sanders, deaf from birth and 15-year old Mabel Hubbard. Each pupil would serve to play an important role in the next developments. George's father, Thomas Sanders, a wealthy businessman, offered Bell a place to stay at nearby Salem with Georgie's grandmother, complete with a room to "experiment". Although the offer was made by George's mother and followed the year-long arrangement in 1872 where her son and his nurse had moved to quarters next to Bell's boarding house, it was clear that Mr. Sanders was backing the proposal. The arrangement was for teacher and student to continue their work together with free room and board thrown in. Mabel was a bright, attractive girl who was ten years his junior but became the object of Bell's affection. Losing her hearing after a near-fatal bout of scarlet fever close to her fifth birthday, she had learned to read lips but her father, Gardiner Greene Hubbard, Bell's benefactor and personal friend, wanted her to work directly with her teacher.

 

Telephone

By 1874, Bell's initial work on the harmonic telegraph had entered a formative stage with progress it made both at his new Boston "laboratory" (a rented facility) as well as at his family home in Canada a big success. While working that summer in Brantford, Bell experimented with a "phonautograph", a pen-like machine that could draw shapes of sound waves on smoked glass by tracing their vibrations. Bell thought it might be possible to generate undulating electrical currents that corresponded to sound waves. Bell also thought that multiple metal reeds tuned to different frequencies like a harp would be able to convert the undulating currents back into sound. But he had no working model to demonstrate the feasibility of these ideas. 

In 1874, telegraph message traffic was rapidly expanding and in the words of President William Orton, had become "the nervous system of commerce". Orton had contracted with inventors Thomas Edison and Elisha Gray to find a way to send multiple telegraph messages on each telegraph line to avoid the great cost of constructing new lines. When Bell mentioned to Gardiner Hubbard and Thomas Sanders that he was working on a method of sending multiple tones on a telegraph wire using a multi-reed device, the two wealthy patrons began to financially support Bell's experiments. Patent matters would be handled by Hubbard's patent attorney, Anthony Pollok. 

In March 1875, Bell and Pollok visited the famous scientist Joseph Henry, who was then director of the Smithsonian Institution, and asked Henry's advice on the electrical multi-reed apparatus that Bell hoped would transmit the human voice by telegraph. Henry replied that Bell had "the germ of a great invention". When Bell said that he did not have the necessary knowledge, Henry replied, "Get it!" That declaration greatly encouraged Bell to keep trying, even though he did not have the equipment needed to continue his experiments, nor the ability to create a working model of his ideas. However, a chance meeting in 1874 between Bell and Thomas A. Watson, an experienced electrical designer and mechanic at the electrical machine shop of Charles Williams, changed all that. 

With financial support from Sanders and Hubbard, Bell was able to hire Thomas Watson as his assistant and the two of them experimented with acoustic telegraphy. On June 2, 1875, Watson accidentally plucked one of the reeds and Bell, at the receiving end of the wire, heard the overtones of the reed; overtones that would be necessary for transmitting speech. That demonstrated to Bell that only one reed or armature was necessary, not multiple reeds. This led to the "gallows" sound-powered telephone, which was able to transmit indistinct, voice-like sounds, but not clear speech.

 

Later inventions 

Alexander Graham Bell in his later years.

Although Alexander Graham Bell is most often associated with the invention of the telephone, his interests were extremely varied. According to one of his biographers, Charlotte Gray, Bell's work ranged "unfettered across the scientific landscape" and he often went to bed voraciously reading the Encyclopædia Britannica, scouring it for new areas of interest.[105] The range of Bell's inventive genius is represented only in part by the 18 patents granted in his name alone and the 12 he shared with his collaborators. These included 14 for the telephone and telegraph, four for the Photophone, one for the phonograph, five for aerial vehicles, four for "hydroairplanes" and two for selenium cells. Bell's inventions spanned a wide range of interests and included a metal jacket to assist in breathing, the audiometer to detect minor hearing problems, a device to locate icebergs, investigations on how to separate salt from seawater, and work on finding alternative fuels. 

Bell worked extensively in medical research and invented techniques for teaching speech to the deaf. During his Volta Laboratory period, Bell and his associates considered impressing a magnetic field on a record as a means of reproducing sound. Although the trio briefly experimented with the concept, they were unable to develop a workable prototype. They abandoned the idea, never realizing they had glimpsed a basic principle which would one day find its application in the tape recorder, the hard disc and floppy disc drive and other magnetic media. 

Bell's own home used a primitive form of air conditioning, in which fans blew currents of air across great blocks of ice. He also anticipated modern concerns with fuel shortages and industrial pollution. Methane gas, he reasoned, could be produced from the waste of farms and factories. At his Canadian estate in Nova Scotia, he experimented with composting toilets and devices to capture water from the atmosphere. In a magazine interview published shortly before his death, he reflected on the possibility of using solar panels to heat houses. 

Metal detectorBell is also credited with the invention of the metal detector in 1881. The device was quickly put together in an attempt to find the bullet in the body of US President James Garfield. The metal detector worked flawlessly in tests but did not find the assassin's bullet partly because the metal bed frame on which the President was lying disturbed the instrument, resulting in static. The president's surgeons, who were skeptical of the device, ignored Bell's requests to move the president to a bed not fitted with metal springs. Alternatively, although Bell had detected a slight sound on his first test, the bullet may have been lodged too deeply to be detected by the crude apparatus.[106] Bell gave a full account of his experiments in a paper read before the American Association for the Advancement of Science (AAAS) in August 1882.

 

Hydrofoils 

Bell HD-4 on a test run ca. 1919The March 1906 Scientific American article by American pioneer William E. Meacham explained the basic principle of hydrofoils and hydroplanes. Bell considered the invention of the hydroplane as a very significant achievement. Based on information gained from that article he began to sketch concepts of what is now called a hydrofoil boat. Bell and assistant Frederick W. "Casey" Baldwin began hydrofoil experimentation in the summer of 1908 as a possible aid to airplane takeoff from water. Baldwin studied the work of the Italian inventor Enrico Forlanini and began testing models. This led him and Bell to the development of practical hydrofoil watercraft. 

During his world tour of 1910–11, Bell and Baldwin met with Forlanini in France. They had rides in the Forlanini hydrofoil boat over Lake Maggiore. Baldwin described it as being as smooth as flying. On returning to Baddeck, a number of initial concepts were built as experimental models, including the Dhonnas Beag, the first self-propelled Bell-Baldwin hydrofoil. The experimental boats were essentially proof-of-concept prototypes that culminated in the more substantial HD-4, powered by Renault engines. A top speed of 54 miles per hour (87 km/h) was achieved, with the hydrofoil exhibiting rapid acceleration, good stability and steering along with the ability to take waves without difficulty. In 1913, Dr. Bell hired Walter Pinaud, a Sydney yacht designer and builder as well as the proprietor of Pinaud's Yacht Yard in Westmount, Nova Scotia to work on the pontoons of the HD-4. Pinaud soon took over the boatyard at Bell Laboratories on Beinn Bhreagh, Bell's estate near Baddeck, Nova Scotia. Pinaud's experience in boat-building enabled him to make useful design changes to the HD-4. After the First World War, work began again on the HD-4. Bell's report to the U.S. Navy permitted him to obtain two 350 horsepower (260 kW) engines in July 1919. On September 9, 1919, the HD-4 set a world marine speed record of 70.86 miles per hour (114.04 km/h),[109] a record which stood for ten years.

 

Aeronautics 

AEA Silver Dart ca. 1909In 1891, Bell had begun experiments to develop motor-powered heavier-than-air aircraft. The AEA was first formed as Bell shared the vision to fly with his wife, who advised him to seek "young" help as Alexander was at the graceful age of 60. 

In 1898, Bell experimented with tetrahedral box kites and wings constructed of multiple compound tetrahedral kites covered in maroon silk. The tetrahedral wings were named Cygnet I, II and III, and were flown both unmanned and manned (Cygnet I crashed during a flight carrying Selfridge) in the period from 1907–1912. Some of Bell's kites are on display at the Alexander Graham Bell National Historic Site. 

Bell was a supporter of aerospace engineering research through the Aerial Experiment Association (AEA), officially formed at Baddeck, Nova Scotia, in October 1907 at the suggestion of his wife Mabel and with her financial support after the sale of some of her real estate.[112] The AEA was headed by Bell and the founding members were four young men: American Glenn H. Curtiss, a motorcycle manufacturer at the time and who held the title "world's fastest man", having ridden his self-constructed motor bicycle around in the shortest time, and who was later awarded the Scientific American Trophy for the first official one-kilometre flight, and who later became a world-renowned airplane manufacturer; Lieutenant Thomas Selfridge, an official observer from the US Federal government and the only person in the army who believed aviation was the future; Frederick W. Baldwin, the first Canadian and first British subject to pilot a public flight in Hammondsport, New York, and J.A.D. McCurdy — Baldwin and McCurdy being new engineering graduates from the University of Toronto. 

The AEA's work progressed to heavier-than-air machines, applying their knowledge of kites to gliders. Moving to Hammondsport, the group then designed and built the Red Wing, framed in bamboo and covered in red silk and powered by a small air-cooled engine. On March 12, 1908, over Keuka Lake, the biplane lifted off on the first public flight in North America. The innovations that were incorporated into this design included a cockpit enclosure and tail rudder (later variations on the original design would add ailerons as a means of control). One of the AEA's inventions, the aileron, which was also created independently by Robert Esnault-Pelterie and several others, was to become a standard component on all airplanes. The White Wing and June Bug were to follow and by the end of 1908, over 150 flights without mishap had been accomplished. However, the AEA had depleted its initial reserves and only a $15,000 grant from Mrs. Bell allowed it to continue with experiments.

 

Their final aircraft design, the Silver Dart embodied all of the advancements found in the earlier machines. On February 23, 1909, Bell was present as the Silver Dart flown by J.A.D. McCurdy from the frozen ice of Bras d'Or, made the first aircraft flight in Canada. Bell had worried that the flight was too dangerous and had arranged for a doctor to be on hand. With the successful flight, the AEA disbanded and the Silver Dart would revert to Baldwin and McCurdy who began the Canadian Aerodrome Company and would later demonstrate the aircraft to the Canadian Army. 

Eugenics

Bell was connected with the eugenics movement in the United States. In his lecture Memoir upon the formation of a deaf variety of the human race presented to the National Academy of Sciences on November 13, 1883 he noted that congenitally deaf parents were more likely to produce deaf children and tentatively suggested that couples where both parties were deaf should not marry. However, it was his hobby of livestock breeding which led to his appointment to biologist David Starr Jordan's Committee on Eugenics, under the auspices of the American Breeders Association. The committee unequivocally extended the principle to man. From 1912 until 1918 he was the chairman of the board of scientific advisers to the Eugenics Record Office associated with Cold Spring Harbor Laboratory in New York, and regularly attended meetings. In 1921, he was the honorary president of the Second International Congress of Eugenics held under the auspices of the American Museum of Natural History in New York. Organisations such as these advocated passing laws (with success in some states) that established the compulsory sterilization of people deemed to be, as Bell called them, a "defective variety of the human race". By the late 1930s, about half the states in the U.S. had eugenics laws, and the California laws were used as a model for eugenics laws in Nazi Germany.[citation needed]

 

Legacy and honors 

Honors and tributes flowed to Bell in increasing numbers as his most famous invention became ubiquitous and his personal fame grew. Bell received numerous honorary degrees from colleges and universities, to the point that the requests almost became burdensome. During his life he also received dozens of major awards, medals and other tributes. These included statuary monuments to both him and the new form of communication his telephone created, notably the Bell Telephone Memorial erected in his honor in Brantford, Ontario's Alexander Graham Bell Gardens in 1917. 

A large number of Bell's writings, personal correspondence, notebooks, papers and other documents reside at both the United States Library of Congress Manuscript Division (as the Alexander Graham Bell Family Papers), and at the Alexander Graham Bell Institute], Cape Breton University, Nova Scotia; major portions of which are available for online viewing. 

A number of historic sites and other marks commemorate Bell in North America and Europe, including the first telephone companies of the United States and Canada. Among the major sites are: 

The Parks Canada's Alexander Graham Bell National Historic Site, which incorporates the Alexander Graham Bell Museum, in Baddeck, Nova Scotia, close to the Bell estate Beinn Bhreagh.

The Bell Homestead, also known as Melville House, overlooking Brantford, Ontario and the Grand River, which was the Bell family's first home in North America;

Canada's first telephone company building, "the Henderson Home", of the nascent 1877 Bell Telephone Company of Canada, which was carefully relocated in 1969 to the historic Bell Homestead. The Bell Homestead" and the "Bell Telephone Company Building" are both maintained by the Bell Homestead Society. in Brantford, Ontario

The Alexander Graham Bell Memorial Park, which features a broad neoclassical monument built in 1917 by public subscription. The monument graphically depicts mankind's ability to span the globe through telecommunications.

The Alexander Graham Bell Museum (opened in 1956), part of the Alexander Graham Bell National Historic Site which was completed in 1978 in Baddeck, Nova Scotia. Many of the museum's artifacts were donated by Bell's daughters; 

Bell received the Volta Prize with a purse of 50,000 francs (approximately US$250,000 in today's dollars) for the invention of the telephone from the Académie française, representing the French government. Among the luminaries who judged were Victor Hugo and Alexandre Dumas. The Volta Prize was conceived by Napoleon Bonaparte in 1801, and named in honor of Alessandro Volta, with Bell receiving the third grand prize in its history. Since Bell was becoming increasingly affluent, he used his prize money to create endowment funds (the 'Volta Fund') and institutions in and around the United States capital of Washington, D.C.. These included the prestigious 'Volta Laboratory Association' (1880), also known as the Volta Laboratory and as the 'Alexander Graham Bell Laboratory', and which eventually led to the Volta Bureau (1887) as a center for studies on deafness which is still in operation in Georgetown, Washington, D.C. The Volta Laboratory became an experimental facility devoted to scientific discovery, and the very next year invented a wax phonograph cylinder that was later used by Thomas Edison. The laboratory was also the site where he and his associate invented his 'proudest achievement', the Photophone, the optical telephone which presaged fibre optical telecommunications, while the Volta Bureau would later evolve into the Alexander Graham Bell Association for the Deaf and Hard of Hearing (the AG Bell), a leading center for the research and pedagogy of deafness.

In partnership with Gardiner Hubbard, Bell helped establish the publication Science during the early 1880s. In 1888, Bell was one of the founding members of the National Geographic Society and became its second president (1897–1904), and also became a Regent of the Smithsonian Institution (1898–1922). The French government conferred on him the decoration of the Légion d'honneur (Legion of Honor); the Royal Society of Arts in London awarded him the Albert Medal in 1902; and the University of Würzburg, Bavaria, granted him a PhD He was awarded the Franklin Institute's Elliott Cresson Medal in 1912. He was one of the founders of the American Institute of Electrical Engineers in 1884, and served as its president from 1891–92. Bell was later awarded the AIEE's Edison Medal in 1914 "For meritorious achievement in the invention of the telephone". 

The bel (B) and the smaller decibel (dB) are units of measurement of sound intensity invented by Bell Labs and named after him. Since 1976 the IEEE's Alexander Graham Bell Medal has been awarded to honor outstanding contributions in the field of telecommunications.

In 1940 the US Post Office issued a commemorative stamp honoring Bell in its 'Famous Americans Series'. The First Day of Issue ceremony was held on October 28 in Boston, Massachusetts, the city where Bell spent considerable time on research and working with the deaf. The Bell stamp became very popular and sold out in little time. The stamp became, and remains to this day, the most valuable one of the series. 

The 150th anniversary of Bell's birth in 1997 was marked by a special issue of commemorative £1 banknotes from the Royal Bank of Scotland. The illustrations on the reverse of the note include Bell's face in profile, his signature, and objects from Bell's life and career: users of the telephone over the ages; an audio wave signal; a diagram of a telephone receiver; geometric shapes from engineering structures; representations of sign language and the phonetic alphabet; the geese which helped him to understand flight; and the sheep which he studied to understand genetics. Additionally, the Government of Canada honored Bell in 1997 with a C$100 gold coin, in tribute also to the 150th anniversary of his birth, and with a silver dollar coin in 2009 to honor of the 100th anniversary of flight in Canada. That first flight was made by an airplane designed under Dr. Bell's tutelage, named the Silver Dart Bell's image, and also those of his many inventions have graced paper money, coinage and postal stamps in numerous countries worldwide for many dozens of years. 

Bell's name is widely known and still used as part of the names of dozens of educational institutes, corporate namesakes, street and place names around the world. Alexander Graham Bell was also ranked 57th among the 100 Greatest Britons (2002) in an official BBC nationwide poll, and among the Top Ten Greatest Canadians (2004), and the 100 Greatest Americans (2005).[141][142] In 2006, Bell was also named as one of the 10 greatest Scottish scientists in history after having been listed in the National Library of Scotland's 'Scottish Science Hall of Fame'.

 

Bell, an alumnus of the University of Edinburgh, Scotland, receiving an honorary Doctor of Laws degree (LL.D.) at the university in 1906.See also: Bell Telephone Memorial

Honorary degrees Alexander Graham Bell, who was unable to complete the university program of his youth, received numerous Honorary Degrees from academic institutions, including:

 

Gallaudet College in Washington, D.C. (PhD) in 1880[144]

Harvard University in Cambridge, Massachusetts (LL.D) in 1896

University of Würzburg in Würzburg, Bavaria (PhD) in 1902

University of Edinburgh in Edinburgh, Scotland (LL.D) in April 1906[145]

Queen's University in Kingston, Ontario in 1909

Dartmouth College in Hanover, New Hampshire (LL.D) on June 25, 1913[146]

This list is incomplete; you can help by expanding it. 

Death

Bell died of complications arising from diabetes on August 2, 1922, at his private estate, Beinn Bhreagh, Nova Scotia, at age 75.[147] Bell had also been afflicted with pernicious anemia. His last view of the land he had inhabited was by moonlight on his mountain estate at 2:00 A.M While tending to her husband after his long illness, Mabel whispered, "Don't leave me." By way of reply, Bell traced the sign for no—and then he expired.